Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Glue Controls Chromosome Segregation in Oocytes

28.11.2013
The spindle assembly checkpoint (SAC) is a surveillance mechanism that delays cell division until all chromosomes have attached to the spindle poles.

If this mechanism is impaired in oocytes, it can result in chromosome missegregation and production of aneuploid fetuses, leading to abnormalities like Down’s syndrome (trisomy 21), Edward’s syndrome (trisomy 18) or Klinefelter’s syndrome (XXY).


Aneuploid Mouse Egg Cell

The IMBA researcher Kikue Tachibana-Konwalski and her team together with collaborators from the University of Oxford have now discovered that the proper functioning of the SAC in mammalian oocytes depends on the “molecular glue” called cohesin.

Cohesin is essential to hold replicated chromosomes together. Using molecular “scissors” in the form of TEV protease, the researchers inactivated cohesin to generate chromosomes that cannot bi-orient on the spindle and therefore would be expected to activate a checkpoint response and trigger a cell cycle arrest.

Instead, they found that oocytes in which cohesin has been destroyed still divide and produce highly aneuploid eggs. Therefore, cohesin is required for a robust SAC in oocytes. This has important implications for ageing oocytes, where cohesin deterioration will compromise the SAC, leading to chromosome segregation errors.

Original publication in “Current Biology”: “Spindle Assembly Checkpoint of Oocytes Depends on a Kinetochore Structure Determined by Cohesin in Meiosis I”

Kikue Tachibana-Konwalski
Kikue Tachibana-Konwalski was educated in Austria, Japan and the UK. She obtained a BA Hons in Natural Sciences with specialization in Genetics and a PhD in cell cycle and cancer research from Cambridge University. For her postdoctoral research in Kim Nasmyth’s lab in Oxford, she pioneered the use of TEV protease technology in the mouse to study cohesin in female germ cells. Kikue is a group leader at IMBA since November 2011. Her research focuses on the molecular control of the oocyte-to-zygote transition with the goal of understanding female age-related aneuploidy and infertility.
IMBA:
The Institute of Molecular Biotechnology (IMBA) combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading organization promoting non-university academic basic research in Austria. IMBA was voted as second to top international workplace for postdoctoral researchers, by readers of the US based and online life sciences magazine, The Scientist. imba.oeaw.ac.at
Austrian Academy of Sciences (ÖAW):
Within the Austrian Academy of Sciences, renowned researchers from 28 research institutions have formed a comprehensive knowledge pool covering a wide array of disciplines for the sake of progress in science as a whole. All of the Academy's activities are closely networked at national, EU, and international level with university and non-university partners.

www.oeaw.ac.at

Elena Bertolini | Newswise
Further information:
http://de.imba.oeaw.ac.at/Presse-Foto
http://www.oeaw.ac.at

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>