Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Geometry, new field in the making

19.03.2013
Meet the Expert - Professor Deok-Soo Kim of Hanyang University is working towards creating a new field called Molecular Geometry which provides geometrical solutions within the study of molecules.

Professor Deok-Soo Kim of the Department of Industrial Engineering is a pioneer in adapting the Voronoi Diagram for 3D Spheres in biological molecules. Prof. Kim is also the creator of BetaMol, a molecular modeling, analyzing, and processing software based on the theory of the Voronoi diagram, quasi-triangulation, and the Beta-complex.


Photo by Jungho Choi

His publications include “Protein Structure Optimization by Side-chain Positioning via Beta-complex” in the Journal of Global Optimization; “BetaMol: a molecular modeling, analysis and visualization software based on the beta-complex and the quasi-triangulation” in the Journal of Advanced Mechanical Design, Systems, and Manufacturing; and “Beta-decomposition for the Volume and Area of the Union of Three-dimensional Balls and Their Offsets” in the Journal of Computational Chemistry.

The Voronoi Diagram is a set of Voronoi regions that are closer to a corresponding object than any other objects. By being able to express the spatial information of particles, it provides an effective and quick solution to geometrical problems.

While the Voronoi Diagram has been researched in two dimensional structures, Kim initiated and succeeded in the field of three dimensional spheres. Throughout the years, Kim’s theories and systems have provided a foundation to analyze the structure of particles with speed and effectiveness. Kim, an industrial engineer, has broadened his interest to the field of molecular biology, in order to solve problems faced in application.

Properly understanding the information of a molecular surface assists in the calculation of the molecule’s energy. This is a common challenge faced by numerous biochemists. Because the task of determining the surface is a geometrical issue, by using the systems developed by Kim, individuals can greatly reduce both time and effort and thus focus on other issues rather than on the geometry. At the moment, Kim’s theory is being used by numerous institutions and individuals.

Docking is important in the area of molecular modeling and is essential for the development of pharmaceutics. While continued research has been conducted by others, noticeable positive results have been generated particularly when using Kim’s method.

Through his method, Kim hopes to design proteins by means of protein modification in the future. While a variety of software exists for protein modification, they are still in their inchoate stage. To enhance and enable the reduction of time and effort with more effectiveness, Kim will attempt to create a new system which is embedded with his own methods.

In addition, Kim is striving to create a new field called ‘Molecular Geometry.’ To overcome the obstacles related to geometrical issues faced by individuals devoted to the study of molecules, Kim’s 'Molecular Geometry' aims at providing geometrical solutions within the spectrum of molecules. Kim has recently conducted a lecture and seminar at the IBM Thomas J. Watson Research Center and New York University's Courant Institute of Mathematical Sciences. One third of the progress needed to create 'Molecular Geometry' has been completed and future research is still necessary. However, Kim believes that the establishment of his proposed new field will have a major impact in a wide range of fields.

Written by Jisoo Lee (themanjsl@hanyang.ac.kr) for Internet Hanyang News

Joohong Ahnn | Research asia research news
Further information:
http://www.hanyang.ac.kr/english/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>