Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecular Force Probe Stretches Molecules, Atom by Atom

30.03.2009
Chemists at the University of Illinois have created a simple and inexpensive molecular technique that replaces an expensive atomic force microscope for studying what happens to small molecules when they are stretched or compressed.

The researchers use stiff stilbene, a small, inert structure, as a molecular force probe to generate well-defined forces on various molecules, atom by atom.

“By pulling on different pairs of atoms, we can explore what happens when we stretch a molecule in different ways,” said chemistry professor Roman Boulatov. “That information tells us a lot about the properties of fleeting structures called transition states that govern how, and how fast, chemical transformations occur.”

Boulatov, research associate Qing-Zheng Yang, postdoctoral researcher Daria Khvostichenko, and graduate students Zhen Huang and Timothy Kucharski describe the molecular force probe and present early results in a paper accepted for publication in Nature Nanotechnology. The paper is to be posted on the journal’s Web site on Sunday (March 29).

Similar to the force that develops when a rubber band is stretched, restoring forces occur in parts of molecules when they are stretched. Those restoring forces contain information about how much the molecule was distorted, and in what direction.

The molecular force probe allows reaction rates to be measured as a function of the restoring force in a molecule that has been stretched or compressed.

This information is essential for developing a chemomechanical kinetic theory that explains how force affects rates of chemical transformations.

Such a theory will help researchers better understand a host of complex phenomena, from the operation of motor proteins that underlie the action of muscles, to the propagation of cracks in polymers and the mechanisms by which living cells sense forces in their surroundings.

“Localized reactions offer the best opportunity to gain fundamental insights into the interplay of reaction rates and molecular restoring forces,” Boulatov said, “but these reactions are extremely difficult to study with a microscopic force probe.”

Microscopic force probes, which are utilized by atomic force microscopes, are much too large to grab onto a single pair of atoms. Measuring microns in size, the probe tips contact many atoms at once, smearing experimental results.

“By replacing microscopic force probes with small molecules like stiff stilbene, we can study the relationship between restoring force and reaction rate for localized reactions,” Boulatov said. “The more accurately we know where our probe acts, the better control we have over the distortion, and the easier it is to interpret the results.”

Using conventional methods, Boulatov and his students first attach stiff stilbene to a molecule they wish to study. Then they irradiate the resulting molecular assembly with visible light. The light causes the stilbene to change from a fully relaxed shape to one that exerts a desired force on the molecule. The chemists then measure the reaction rate of the molecule as a function of temperature, which reveals details of what caused the reaction to accelerate.

One type of chemical transformation the researchers studied is the breaking of one strong (covalent) chemical bond at a time. The experimental results were sometimes counterintuitive.

“Unlike a rubber band, which will always break faster when stretched, pulling on some chemical bonds doesn’t make them break any faster; and sometimes it’s a bond that you don’t pull on that will break instead of the one you do pull,” Boulatov said. “That’s because experiences in the macroscopic world do not map particularly well to the molecular world.”

Molecules do not live in a three-dimensional world, Boulatov said. Molecules populate a multi-dimensional world, where forces applied to a pair of atoms can act in more than three dimensions.

“Even small molecules will stretch and deform in many different ways,” Boulatov said, “making the study of molecular forces even more intriguing.”

Funding was provided by the National Science Foundation, the U.S. Air Force Office of Scientific Research, the American Chemical Society Petroleum Research Fund and the U. of I. The National Center for Supercomputing Applications and the U.S. Department of Defense High-Performance Computing Modernization Program provided computational resources.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>