Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular evolution is echoed in bat ears

08.09.2008
Bats' ability to echolocate may have evolved more than once, according to research published this week by Queen Mary, University of London scientists.

Species of bat with the ability to echolocate do not all group together in the evolutionary tree of life - some are more related to their non-echolocating cousins, the fruit bats. This has raised the question of whether echolocation in bats has evolved more than once, or whether the fruit bats somehow lost their ability to echolocate.

Writing in the journal Proceedings of the National Academy of Sciences, Dr Stephen Rossiter from Queen Mary's School of Biological and Chemical Sciences, along with Professor Gareth Jones from the University of Bristol and Professor Shuyi Zhang and Dr Li Gang from East China Normal University in Shanghai, studied a gene called Prestin that codes for a protein of the outer hair cells - the tiny structures in the inner ear that help to give mammals their sensitive hearing (Prestin is linked to deafness in humans).

They looked at the Prestin DNA sequence in a range of echolocating bats and fruit bats and found that parts of the gene appear to have evolved to be similar in the distantly related echolocating species. But they couldn't find any evidence of genetic changes in the fruit bat Prestin that might be expected from a loss of high frequency hearing.

Dr Rossiter explains: "If Prestin does indeed help bats to hear their high-pitched echoes, then these results appear to support the idea that echolocation has evolved more than once in bats. This apparent independent evolution of a trait in distant relatives is known as convergence, a term that is more commonly used to describe the physical features of species that live in similar habitats and face similar selection pressures, such as the spines of hedgehogs and porcupines."

Examples of convergence at a molecular level are very rare. Based on their results, Dr Rossiter and his colleagues warn of the potential problems of inferring true evolutionary relationships from genes that may be involved in important functions and, therefore, could be shaped by convergent evolution.

Dr Rossiter added: "If hearing were an Olympic event, echolocating bats would be strong medal contenders. Their ears are tuned to higher sound frequencies than those of any other mammals because they need to listen to the returning echoes of their ultra-sonic squeaks."

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>