Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular decay of enamel-specific gene in toothless mammals supports theory of evolution

07.09.2009
Biologists at the University of California, Riverside report new evidence for evolutionary change recorded in both the fossil record and the genomes (or genetic blueprints) of living organisms, providing fresh support for Charles Darwin's theory of evolution.

The researchers were able to correlate the progressive loss of enamel in the fossil record with a simultaneous molecular decay of a gene, called the enamelin gene, that is involved in enamel formation in mammals.

Enamel is the hardest substance in the vertebrate body, and most mammals have teeth capped with it.

Examples exist, however, of mammals without mineralized teeth (e.g., baleen whales, anteaters, pangolins) and of mammals with teeth that lack enamel (e.g., sloths, aardvarks, and pygmy sperm whales). Further, the fossil record documents when enamel was lost in these lineages.

"The fossil record is almost entirely limited to hard tissues such as bones and teeth," said Mark Springer, a professor of biology, who led the study. "Given this limitation, there are very few opportunities to examine the co-evolution of genes in the genome of living organisms and morphological features preserved in the fossil record."

In 2007, Springer, along with Robert Meredith and John Gatesy in the Department of Biology at UC Riverside, initiated a study of enamelless mammals in which the researchers focused on the enamelin gene. They predicted that these species would have copies of the gene that codes for the tooth-specific enamelin protein, but this gene would show evidence of molecular decay in these species.

"Mammals without enamel are descended from ancestral forms that had teeth with enamel," Springer said. "We predicted that enamel-specific genes such as enamelin would show evidence in living organisms of molecular decay because these genes are vestigial and no longer necessary for survival."

Now his lab has found evidence of such molecular "cavities" in the genomes of living organisms. Using modern gene sequencing technology, Meredith discovered mutations in the enamelin gene that disrupt how the enamelin protein is coded, resulting in obliteration of the genetic blueprint for the enamelin protein.

Results of the study appear in the Sept. 4 issue of the open-access journal PLoS Genetics.

Darwin argued that all organisms are descended from one or a few organisms and that natural selection drives evolutionary change. The fossil record demonstrates that the first mammals had teeth with enamel. Mammals without enamel therefore must have descended from mammals with enamel-covered teeth.

"We could therefore predict that nonfunctional vestiges of the genes that code for enamel should be found in mammals that lack enamel," Springer said. "When we made our predictions, however, we did not have sequences for the enamelin gene in toothless and enamelless mammals. Since then my lab worked on obtaining these sequences so we could test our prediction."

Previous studies in evolutionary biology have provided only limited evidence linking morphological degeneration in the fossil record to molecular decay in the genome. The study led by Springer takes advantage of the hardness of enamel and teeth to provide more robust evidence for the linkage.

"The molecular counterpart to vestigial organs is pseudogenes that are descended from formerly functional genes," Springer explained. "In our research we clearly see the parallel evolution of enamel loss in the fossil record and the molecular decay of the enamelin gene into a pseudogene in representatives of four different orders of mammals that have lost enamel."

Broadly, the research involved the following steps: First, Meredith collected the DNA sequences for the enamelin gene in different mammals. Next, the researchers analyzed sequences using a variety of molecular evolutionary methods, including new approaches developed by Springer's group. Finally, the group used the results of their analyses to test previous hypotheses and generate new ones.

"Currently, we are actively engaged in deciphering the evolutionary history of other genes that are involved in enamel formation," Springer said.

Authors of the study are Springer; Meredith, a postdoctoral scholar in Springer's lab; Gatesy, an associate professor of biology; William Murphy of Texas A&M University; and Oliver Ryder of the San Diego Zoo's Institute for Conservation Research, Calif. Meredith, the first author of the research paper, performed all the lab work and, under guidance from Springer and Gatesy, ran most of the computer analyses.

The research was supported in part by an Assembling the Tree of Life grant to Springer and Gatesy from the National Science Foundation.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>