Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular decay of enamel-specific gene in toothless mammals supports theory of evolution

07.09.2009
Biologists at the University of California, Riverside report new evidence for evolutionary change recorded in both the fossil record and the genomes (or genetic blueprints) of living organisms, providing fresh support for Charles Darwin's theory of evolution.

The researchers were able to correlate the progressive loss of enamel in the fossil record with a simultaneous molecular decay of a gene, called the enamelin gene, that is involved in enamel formation in mammals.

Enamel is the hardest substance in the vertebrate body, and most mammals have teeth capped with it.

Examples exist, however, of mammals without mineralized teeth (e.g., baleen whales, anteaters, pangolins) and of mammals with teeth that lack enamel (e.g., sloths, aardvarks, and pygmy sperm whales). Further, the fossil record documents when enamel was lost in these lineages.

"The fossil record is almost entirely limited to hard tissues such as bones and teeth," said Mark Springer, a professor of biology, who led the study. "Given this limitation, there are very few opportunities to examine the co-evolution of genes in the genome of living organisms and morphological features preserved in the fossil record."

In 2007, Springer, along with Robert Meredith and John Gatesy in the Department of Biology at UC Riverside, initiated a study of enamelless mammals in which the researchers focused on the enamelin gene. They predicted that these species would have copies of the gene that codes for the tooth-specific enamelin protein, but this gene would show evidence of molecular decay in these species.

"Mammals without enamel are descended from ancestral forms that had teeth with enamel," Springer said. "We predicted that enamel-specific genes such as enamelin would show evidence in living organisms of molecular decay because these genes are vestigial and no longer necessary for survival."

Now his lab has found evidence of such molecular "cavities" in the genomes of living organisms. Using modern gene sequencing technology, Meredith discovered mutations in the enamelin gene that disrupt how the enamelin protein is coded, resulting in obliteration of the genetic blueprint for the enamelin protein.

Results of the study appear in the Sept. 4 issue of the open-access journal PLoS Genetics.

Darwin argued that all organisms are descended from one or a few organisms and that natural selection drives evolutionary change. The fossil record demonstrates that the first mammals had teeth with enamel. Mammals without enamel therefore must have descended from mammals with enamel-covered teeth.

"We could therefore predict that nonfunctional vestiges of the genes that code for enamel should be found in mammals that lack enamel," Springer said. "When we made our predictions, however, we did not have sequences for the enamelin gene in toothless and enamelless mammals. Since then my lab worked on obtaining these sequences so we could test our prediction."

Previous studies in evolutionary biology have provided only limited evidence linking morphological degeneration in the fossil record to molecular decay in the genome. The study led by Springer takes advantage of the hardness of enamel and teeth to provide more robust evidence for the linkage.

"The molecular counterpart to vestigial organs is pseudogenes that are descended from formerly functional genes," Springer explained. "In our research we clearly see the parallel evolution of enamel loss in the fossil record and the molecular decay of the enamelin gene into a pseudogene in representatives of four different orders of mammals that have lost enamel."

Broadly, the research involved the following steps: First, Meredith collected the DNA sequences for the enamelin gene in different mammals. Next, the researchers analyzed sequences using a variety of molecular evolutionary methods, including new approaches developed by Springer's group. Finally, the group used the results of their analyses to test previous hypotheses and generate new ones.

"Currently, we are actively engaged in deciphering the evolutionary history of other genes that are involved in enamel formation," Springer said.

Authors of the study are Springer; Meredith, a postdoctoral scholar in Springer's lab; Gatesy, an associate professor of biology; William Murphy of Texas A&M University; and Oliver Ryder of the San Diego Zoo's Institute for Conservation Research, Calif. Meredith, the first author of the research paper, performed all the lab work and, under guidance from Springer and Gatesy, ran most of the computer analyses.

The research was supported in part by an Assembling the Tree of Life grant to Springer and Gatesy from the National Science Foundation.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>