Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular decay of enamel-specific gene in toothless mammals supports theory of evolution

07.09.2009
Biologists at the University of California, Riverside report new evidence for evolutionary change recorded in both the fossil record and the genomes (or genetic blueprints) of living organisms, providing fresh support for Charles Darwin's theory of evolution.

The researchers were able to correlate the progressive loss of enamel in the fossil record with a simultaneous molecular decay of a gene, called the enamelin gene, that is involved in enamel formation in mammals.

Enamel is the hardest substance in the vertebrate body, and most mammals have teeth capped with it.

Examples exist, however, of mammals without mineralized teeth (e.g., baleen whales, anteaters, pangolins) and of mammals with teeth that lack enamel (e.g., sloths, aardvarks, and pygmy sperm whales). Further, the fossil record documents when enamel was lost in these lineages.

"The fossil record is almost entirely limited to hard tissues such as bones and teeth," said Mark Springer, a professor of biology, who led the study. "Given this limitation, there are very few opportunities to examine the co-evolution of genes in the genome of living organisms and morphological features preserved in the fossil record."

In 2007, Springer, along with Robert Meredith and John Gatesy in the Department of Biology at UC Riverside, initiated a study of enamelless mammals in which the researchers focused on the enamelin gene. They predicted that these species would have copies of the gene that codes for the tooth-specific enamelin protein, but this gene would show evidence of molecular decay in these species.

"Mammals without enamel are descended from ancestral forms that had teeth with enamel," Springer said. "We predicted that enamel-specific genes such as enamelin would show evidence in living organisms of molecular decay because these genes are vestigial and no longer necessary for survival."

Now his lab has found evidence of such molecular "cavities" in the genomes of living organisms. Using modern gene sequencing technology, Meredith discovered mutations in the enamelin gene that disrupt how the enamelin protein is coded, resulting in obliteration of the genetic blueprint for the enamelin protein.

Results of the study appear in the Sept. 4 issue of the open-access journal PLoS Genetics.

Darwin argued that all organisms are descended from one or a few organisms and that natural selection drives evolutionary change. The fossil record demonstrates that the first mammals had teeth with enamel. Mammals without enamel therefore must have descended from mammals with enamel-covered teeth.

"We could therefore predict that nonfunctional vestiges of the genes that code for enamel should be found in mammals that lack enamel," Springer said. "When we made our predictions, however, we did not have sequences for the enamelin gene in toothless and enamelless mammals. Since then my lab worked on obtaining these sequences so we could test our prediction."

Previous studies in evolutionary biology have provided only limited evidence linking morphological degeneration in the fossil record to molecular decay in the genome. The study led by Springer takes advantage of the hardness of enamel and teeth to provide more robust evidence for the linkage.

"The molecular counterpart to vestigial organs is pseudogenes that are descended from formerly functional genes," Springer explained. "In our research we clearly see the parallel evolution of enamel loss in the fossil record and the molecular decay of the enamelin gene into a pseudogene in representatives of four different orders of mammals that have lost enamel."

Broadly, the research involved the following steps: First, Meredith collected the DNA sequences for the enamelin gene in different mammals. Next, the researchers analyzed sequences using a variety of molecular evolutionary methods, including new approaches developed by Springer's group. Finally, the group used the results of their analyses to test previous hypotheses and generate new ones.

"Currently, we are actively engaged in deciphering the evolutionary history of other genes that are involved in enamel formation," Springer said.

Authors of the study are Springer; Meredith, a postdoctoral scholar in Springer's lab; Gatesy, an associate professor of biology; William Murphy of Texas A&M University; and Oliver Ryder of the San Diego Zoo's Institute for Conservation Research, Calif. Meredith, the first author of the research paper, performed all the lab work and, under guidance from Springer and Gatesy, ran most of the computer analyses.

The research was supported in part by an Assembling the Tree of Life grant to Springer and Gatesy from the National Science Foundation.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>