Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Chaperone Keeps Bacterial Proteins from Slow-Dancing to Destruction

06.01.2010
Just like teenagers at a prom, proteins are tended by chaperones whose job it is to prevent unwanted interactions among immature clients. And at the molecular level, just as at the high school gym level, it's a job that usually requires a lot of energy.

In new research, scientists at the University of Michigan and Howard Hughes Medical Institute have discovered how a protein chaperone called HdeA, which helps protect bacteria like the notorious Escherichia coli from the ravages of stomach acid, saves energy while keeping proteins from forming destructive clumps.

The research is described in a paper published online this week in the Proceedings of the National Academy of Sciences.

Proteins in disease-causing bacteria like E. coli unfold when they land in stomach acid after being accidentally ingested by humans and other animals. This unfolding stops the proteins from working and could spell doom for the bacteria if the chaperone HdeA didn't step in. HdeA works by binding very tightly to the unfolded proteins while the bacteria are in the stomach. By attaching to the bacterial proteins, the chaperone stops them from tangling like slow-dancing teens, which could kill the bacteria.

The researchers discovered how HdeA is then able to let go of the unfolded proteins as the bacteria pass into the small intestine so that the proteins refold instead of clumping together.

"HdeA uses a unique timed-release mechanism," said postdoctoral fellow Tim Tapley, who spearheaded the work. "If the proteins were released all at once they would likely clump together, killing the bacteria. What we found instead is that the chaperone HdeA lets go of them gradually, making it more likely that they fold back up into their proper form than clump together."

While most molecular chaperones consume large amounts of cellular energy in order to function, HdeA instead taps energy freely available in its living environment.

"In this way, HdeA is a bit like a wind powered machine, except that instead of harnessing wind, HdeA uses the energy from pH changes in the surrounding environment as the bacteria move from the acid stomach to the slightly alkaline small intestine," said James Bardwell, in whose lab the work was done. Bardwell is a professor of molecular, cellular and developmental biology and of biological chemistry, as well as a Howard Hughes Medical Institute Investigator.

Tapley and Bardwell were assisted by research specialist Sumita Chakraborty, associate professor Ursula Jakob and Titus Franzmann, a postdoctoral fellow in the lab of Stefan Walter. The research was funded in part by the Howard Hughes Medical Institute and the National Institutes of Health.

More information:

James Bardwell: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1016

Proceedings of the National Academy of Science: http://www.pnas.org/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.pnas.org/
http://www.umich.edu

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>