Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Chaperone Keeps Bacterial Proteins from Slow-Dancing to Destruction

06.01.2010
Just like teenagers at a prom, proteins are tended by chaperones whose job it is to prevent unwanted interactions among immature clients. And at the molecular level, just as at the high school gym level, it's a job that usually requires a lot of energy.

In new research, scientists at the University of Michigan and Howard Hughes Medical Institute have discovered how a protein chaperone called HdeA, which helps protect bacteria like the notorious Escherichia coli from the ravages of stomach acid, saves energy while keeping proteins from forming destructive clumps.

The research is described in a paper published online this week in the Proceedings of the National Academy of Sciences.

Proteins in disease-causing bacteria like E. coli unfold when they land in stomach acid after being accidentally ingested by humans and other animals. This unfolding stops the proteins from working and could spell doom for the bacteria if the chaperone HdeA didn't step in. HdeA works by binding very tightly to the unfolded proteins while the bacteria are in the stomach. By attaching to the bacterial proteins, the chaperone stops them from tangling like slow-dancing teens, which could kill the bacteria.

The researchers discovered how HdeA is then able to let go of the unfolded proteins as the bacteria pass into the small intestine so that the proteins refold instead of clumping together.

"HdeA uses a unique timed-release mechanism," said postdoctoral fellow Tim Tapley, who spearheaded the work. "If the proteins were released all at once they would likely clump together, killing the bacteria. What we found instead is that the chaperone HdeA lets go of them gradually, making it more likely that they fold back up into their proper form than clump together."

While most molecular chaperones consume large amounts of cellular energy in order to function, HdeA instead taps energy freely available in its living environment.

"In this way, HdeA is a bit like a wind powered machine, except that instead of harnessing wind, HdeA uses the energy from pH changes in the surrounding environment as the bacteria move from the acid stomach to the slightly alkaline small intestine," said James Bardwell, in whose lab the work was done. Bardwell is a professor of molecular, cellular and developmental biology and of biological chemistry, as well as a Howard Hughes Medical Institute Investigator.

Tapley and Bardwell were assisted by research specialist Sumita Chakraborty, associate professor Ursula Jakob and Titus Franzmann, a postdoctoral fellow in the lab of Stefan Walter. The research was funded in part by the Howard Hughes Medical Institute and the National Institutes of Health.

More information:

James Bardwell: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1016

Proceedings of the National Academy of Science: http://www.pnas.org/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.pnas.org/
http://www.umich.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>