Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular chains hypersensitive to magnetic fields

05.07.2013
Nanoscientists Twente, Strasbourg and Eindhoven publish in top scientific journal Science

Researchers of MESA+, the research institute for nanotechnology of the University of Twente, in cooperation with researchers of the University of Strasbourg and Eindhoven University of Technology, are the first to successfully create perfect one-dimensional molecular wires of which the electrical conductivity can almost entirely be suppressed by a weak magnetic field at room temperature.


A conducting-probe atomic force microscope (CP-AFM) measures the electrical conduction of aromatic molecules, DXP, aligned within the channels of a zeolite crystal on top of a conducting substrate. The channels have a maximum diameter of 1.26 nanometer and an entrance diameter of only 0.71 nanometer; the DXP molecules have the same width as the channel entrances and a length of 2.2 nanometers. Therefore, the entrapped molecules are all aligned along the zeolite channel axis, forming perfectly one-dimensional molecular wires. The zoom-in shows a DXP molecule confined in a zeolite channel. The IUPAC chemical name of DXP is N,N'-bis(2,6-dimethylphenyl)-perylene-3,4,9,10-tetracarboxylic diimide.

Credit: MESA+


Zeolite L is an electrically insulating aluminosilicate crystalline system, which consists of many channels running through the whole crystal and oriented parallel to the cylinder axis. The geometrical constraints of the zeolite host structure allow for the formation of one-dimensional chains of highly uniaxially oriented molecules.

Credit: MESA+

The underlying mechanism is possibly closely related to the biological compass used by some migratory birds to find their bearings in the geomagnetic field. This spectacular discovery may lead to radically new magnetic field sensors, for smartphones for example. The leading scientific journal Science publishes the research results on 4 July.

In their experiments, the researchers made use of DXP, the organic molecule which is a red dye of the same type as once used by Ferrari for their famous Testarossa. In order to thread the molecules so that they form one-dimensional chains of 30 to 100 nanometers in length - 1 nanometer being 1 billionth of a meter - they applied a smart trick: they locked the molecules in zeolite crystals. Zeolites are porous minerals composed of silicon, aluminum and oxygen atoms with narrow channels, like the lift shafts in a block of flats. The diameter of the channels in the zeolites is only 1 nanometer, just a little wider than the molecule's diameter. This enabled the researchers to create chains of aligned molecules inside the zeolite channel, which are only 1 molecule wide.

Molecular electric wires
The zeolite crystals containing the molecular wires were then placed on an electricity-conductive substrate. By placing a very sharp conductive needle, of an atomic force microscope (AFM), on top of a zeolite crystal, the researchers were able to measure the electrical conductivity in the molecule chains. Professor Wilfred van der Wiel, who developed and led the experiment, says that measuring the electrical conductivity in these molecular electric wires is a unique result in itself. "But the behavior of these wires is simply spectacular when applying a magnetic field," he adds. This is because electrical conductivity nearly completely breaks down in a magnetic field of just a few milliteslas in size, a field which you could easily generate with a refrigerator magnet. Van der Wiel: "The fact that the effect is so dramatic and occurs even in small magnetic fields at room temperature makes this result very special."

Single-lane road

The change in electrical resistance through a magnetic field is called magnetoresistance and is very important in technology. It is also used in hard disk read heads. Usually, magnetic materials are indispensable for creating magnetoresistance. However, the ultra-high magnetoresistance which has been measured in Twente was achieved without any magnetic materials. The researchers ascribe this effect to the interaction between the electrons carrying electricity and the magnetic field which is generated by the surrounding atomic nuclei in the organic molecules. Current suppression in a small magnetic field can ultimately be traced back to the famous Pauli exclusion principle, the quantum mechanical principle that states that no two electrons (fermions) may have identical quantum numbers. Since the electric wires are essentially one-dimensional, the effect of the Pauli exclusion principle is dramatic, comparable to an accident on a single-lane road that brings traffic to a standstill. This interpretation is supported by calculations.

Migratory birds
The mechanism that is responsible for ultra-high magnetoresistance in molecular wires is possibly closely related to the biological compass used by some migratory birds to find their bearings in the geomagnetic field. Researchers of the University of Twente are conducting follow-up experiments in the hope to be able to shed more light on this analogy.

Research

The research has been conducted by scientists of the Chair NanoElectronics of the MESA+ Institute for Nanotechnology, in close collaboration with researchers of Eindhoven University of Technology and the University of Strasbourg. On 4 July, the leading scientific journal Science publishes the article 'Ultra-High Magnetoresistance at Room Temperature in Molecular Wires' in which the research results are described in more detail. This research has been made possible by funding from the STW Technology Foundation and the European Union.

Note to the press

For more information, interview requests or a digital copy of the article 'Ultra-High Magnetoresistance at Room Temperature in Molecular Wires', please contact the University of Twente Science Information Officer Joost Bruysters (+31 (0)6 1048 8228) or prof. Wilfred van der Wiel (+31 (0)6 3018 2641).

Joost Bruysters | EurekAlert!
Further information:
http://www.utwente.nl

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>