Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Molecular Basis of Touch Sensation - MDC Researchers Identify New Function of a Well-Known Gene

21.02.2012
A gene known to control lens development in mice and humans is also crucial for the development of neurons responsible for mechanosensory function, as neurobiologists of the Max Delbrück Center (MDC) Berlin-Buch have now discovered.

They found that in mice in which they had removed the c-Maf gene in the nerve cells, touch sensation is impaired. This similarly applies to human carriers of a mutant c-Maf gene. People with such a mutation suffer already at a young age from cataracts, a clouding of the lens which typically affects the elderly (Scienceexpress, 16 Februrary 2012/10.1126/science.1214314)*.


Mechanosensory endings of nerve cells in the skin detect touch stimuli. Here various nerve endings (red and green) nestle around the shaft of a hair (grey, fibrous structure), which is anchored in a hair follicle. The nerve endings are stimulated by movements of the hair. The mechanical stimulus is converted into electrical signals which are transmitted to the brain. (Photo: Hagen Wende/Copyright: MDC)

The patients, as demonstrated by Professor Carmen Birchmeier and Dr. Hagen Wende in collaboration with Professor Gary Lewin and Dr. Stefan Lechner, have difficulty holding objects such as a sheet of paper as a consequence of this mutation. Professor Birchmeier, a developmental biologist, commented on the findings of her research group: “c-Maf is an important gene for the development of the peripheral nerve cells.” The gene controls the development of neurons that detect touch, the mechanosensory neurons. Previously, c-Maf was known as a key regulator of lens development.

Furthermore, the gene is also active in the dorsal root ganglia, an aggregate of nerve cells next to the spinal cord in which the cell bodies of mechanosensory neurons are localized. The nerve cells form long axons, which terminate in the skin in touch corpuscles or at hair shafts. These axons detect mechanical stimuli, which in turn are converted into electrical signals and transmitted to the brain. When you stroke your fingers over a surface, its structure triggers high-frequency vibrations in the finger, to which specific touch receptors, the Pacinian corpuscles, respond.

In mice with deactivated c-Maf gene only few Pacinian corpuscles are formed, and moreover these few are not intact. The mice are therefore unable to recognize high-frequency vibrations. The same is true for a Swiss family with an inherited mutant c-Maf gene. The consequence is that the affected patients develop cataracts at an early age and have an impaired sense of touch.

*The transcription factor c-Maf controls touch receptor development and function

Hagen Wende1, Stefan G. Lechner2, Cyril Cheret1, Steeve Bourane3, Maria E. Kolanczyk1, Alexandre Pattyn4, Katja Reuter1,5, Francis L. Munier6, Patrick Carroll4, Gary R. Lewin2 and Carmen Birchmeier1,*

1Developmental Biology, 2Molecular Physiology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
3Molecular Neurobiology Laboratory, Salk Institute, La Jolla, California, USA.
4INSERM U.1051, 80 Rue Augustin Fliche, 34091 Montpellier cedex 05, France.
5New address: University of California, San Francisco, CA 94107.
6Jules Gonin Eye Hospital, Av. de France 15, 1004 Lausanne, Switzerland
Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>