Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Molecular Basis of Touch Sensation - MDC Researchers Identify New Function of a Well-Known Gene

21.02.2012
A gene known to control lens development in mice and humans is also crucial for the development of neurons responsible for mechanosensory function, as neurobiologists of the Max Delbrück Center (MDC) Berlin-Buch have now discovered.

They found that in mice in which they had removed the c-Maf gene in the nerve cells, touch sensation is impaired. This similarly applies to human carriers of a mutant c-Maf gene. People with such a mutation suffer already at a young age from cataracts, a clouding of the lens which typically affects the elderly (Scienceexpress, 16 Februrary 2012/10.1126/science.1214314)*.


Mechanosensory endings of nerve cells in the skin detect touch stimuli. Here various nerve endings (red and green) nestle around the shaft of a hair (grey, fibrous structure), which is anchored in a hair follicle. The nerve endings are stimulated by movements of the hair. The mechanical stimulus is converted into electrical signals which are transmitted to the brain. (Photo: Hagen Wende/Copyright: MDC)

The patients, as demonstrated by Professor Carmen Birchmeier and Dr. Hagen Wende in collaboration with Professor Gary Lewin and Dr. Stefan Lechner, have difficulty holding objects such as a sheet of paper as a consequence of this mutation. Professor Birchmeier, a developmental biologist, commented on the findings of her research group: “c-Maf is an important gene for the development of the peripheral nerve cells.” The gene controls the development of neurons that detect touch, the mechanosensory neurons. Previously, c-Maf was known as a key regulator of lens development.

Furthermore, the gene is also active in the dorsal root ganglia, an aggregate of nerve cells next to the spinal cord in which the cell bodies of mechanosensory neurons are localized. The nerve cells form long axons, which terminate in the skin in touch corpuscles or at hair shafts. These axons detect mechanical stimuli, which in turn are converted into electrical signals and transmitted to the brain. When you stroke your fingers over a surface, its structure triggers high-frequency vibrations in the finger, to which specific touch receptors, the Pacinian corpuscles, respond.

In mice with deactivated c-Maf gene only few Pacinian corpuscles are formed, and moreover these few are not intact. The mice are therefore unable to recognize high-frequency vibrations. The same is true for a Swiss family with an inherited mutant c-Maf gene. The consequence is that the affected patients develop cataracts at an early age and have an impaired sense of touch.

*The transcription factor c-Maf controls touch receptor development and function

Hagen Wende1, Stefan G. Lechner2, Cyril Cheret1, Steeve Bourane3, Maria E. Kolanczyk1, Alexandre Pattyn4, Katja Reuter1,5, Francis L. Munier6, Patrick Carroll4, Gary R. Lewin2 and Carmen Birchmeier1,*

1Developmental Biology, 2Molecular Physiology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
3Molecular Neurobiology Laboratory, Salk Institute, La Jolla, California, USA.
4INSERM U.1051, 80 Rue Augustin Fliche, 34091 Montpellier cedex 05, France.
5New address: University of California, San Francisco, CA 94107.
6Jules Gonin Eye Hospital, Av. de France 15, 1004 Lausanne, Switzerland
Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>