Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular aberration signals cancer

20.02.2014
Several scientists, including one at Simon Fraser University, have made a discovery that strongly links a little understood molecule, which is similar to DNA, to cancer and cancer survival.

EMBO reports, a life sciences journal published by the European Molecular Biology Organization, has just published online the scientists’ findings about small non-coding RNAs.

While RNA is known to be key to our cells’ successful creation of proteins, the role of small non-coding RNAs, a newly discovered cousin of the former, has eluded scientific understanding for the most part. Until now, it was only surmised that most of these molecules had nothing to do with protein production.

However, scientists at SFU, the University of British Columbia and the B.C. Cancer Agency have discovered that many non-coding RNAs are perturbed in cancerous human cells, including breast and lung, in a specific way. The disturbance, which manifests itself as shorter than normal molecular messaging, also occurs at a specific spot on genes.

“These two identifiable characteristics give cancer-causing non-coding RNAs a chemical signature that makes it easy for scientists to identify them in the early stages of many different types of cancer,” says Steven Jones.

The SFU molecular biology and biochemistry professor is this study’s senior author, and the associate director and head of bioinformatics at the B.C. Cancer Agency’s Genome Sciences Centre.

“These molecules’ existence can also be used to classify cancer patients into subgroups of individuals with different survival outcomes,” adds Jones. “While the precise reason why a tumour would change the behaviour of genes in this way is not known, it is likely that it represents a mechanism by which the cancer can subvert and takeover the normally well controlled activity of our genes.”

This study uncovered non-coding RNAs’ cancerous role by using high-throughput sequencing techniques to analyse reams of genetic information on normal and diseased tissue as part of the Cancer Genome Atlas project.

The Cancer Genome Atlas is an ambitious project to characterize the genetic material of more than 500 tumours from more than 20 different cancers. The project provides a goldmine of data for bioinformaticians such as Jones.

Simon Fraser University is consistently ranked among Canada's top comprehensive universities and is one of the top 50 universities in the world under 50 years old. With campuses in Vancouver, Burnaby and Surrey, B.C., SFU engages actively with the community in its research and teaching, delivers almost 150 programs to more than 30,000 students, and has more than 125,000 alumni in 130 countries.

Simon Fraser University: Engaging Students. Engaging Research. Engaging Communities.

Contact:
Steven Jones (Vancouver resident), 604.877.6083, sjones@bcgsc.ca
Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca
Jenn Currie, B.C. Cancer Agency, communications, 604.675.8106, jenn.currie@bccancer.bc.ca

Photos: http://i.sfu.ca/KMnjeF

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

Further reports about: Cancer Genom Molecular Target RNA SFU Vancouver Island early stage human cell non-coding RNAs

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>