Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular aberration signals cancer

20.02.2014
Several scientists, including one at Simon Fraser University, have made a discovery that strongly links a little understood molecule, which is similar to DNA, to cancer and cancer survival.

EMBO reports, a life sciences journal published by the European Molecular Biology Organization, has just published online the scientists’ findings about small non-coding RNAs.

While RNA is known to be key to our cells’ successful creation of proteins, the role of small non-coding RNAs, a newly discovered cousin of the former, has eluded scientific understanding for the most part. Until now, it was only surmised that most of these molecules had nothing to do with protein production.

However, scientists at SFU, the University of British Columbia and the B.C. Cancer Agency have discovered that many non-coding RNAs are perturbed in cancerous human cells, including breast and lung, in a specific way. The disturbance, which manifests itself as shorter than normal molecular messaging, also occurs at a specific spot on genes.

“These two identifiable characteristics give cancer-causing non-coding RNAs a chemical signature that makes it easy for scientists to identify them in the early stages of many different types of cancer,” says Steven Jones.

The SFU molecular biology and biochemistry professor is this study’s senior author, and the associate director and head of bioinformatics at the B.C. Cancer Agency’s Genome Sciences Centre.

“These molecules’ existence can also be used to classify cancer patients into subgroups of individuals with different survival outcomes,” adds Jones. “While the precise reason why a tumour would change the behaviour of genes in this way is not known, it is likely that it represents a mechanism by which the cancer can subvert and takeover the normally well controlled activity of our genes.”

This study uncovered non-coding RNAs’ cancerous role by using high-throughput sequencing techniques to analyse reams of genetic information on normal and diseased tissue as part of the Cancer Genome Atlas project.

The Cancer Genome Atlas is an ambitious project to characterize the genetic material of more than 500 tumours from more than 20 different cancers. The project provides a goldmine of data for bioinformaticians such as Jones.

Simon Fraser University is consistently ranked among Canada's top comprehensive universities and is one of the top 50 universities in the world under 50 years old. With campuses in Vancouver, Burnaby and Surrey, B.C., SFU engages actively with the community in its research and teaching, delivers almost 150 programs to more than 30,000 students, and has more than 125,000 alumni in 130 countries.

Simon Fraser University: Engaging Students. Engaging Research. Engaging Communities.

Contact:
Steven Jones (Vancouver resident), 604.877.6083, sjones@bcgsc.ca
Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca
Jenn Currie, B.C. Cancer Agency, communications, 604.675.8106, jenn.currie@bccancer.bc.ca

Photos: http://i.sfu.ca/KMnjeF

Carol Thorbes | EurekAlert!
Further information:
http://www.sfu.ca

Further reports about: Cancer Genom Molecular Target RNA SFU Vancouver Island early stage human cell non-coding RNAs

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>