Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'Two-Way Radio' Directs Nerve Cell Branching And Connectivity

08.01.2013
Insect research yields insights for muscle control and nerve disorders in mammals, including humans

Working with fruit flies, Johns Hopkins scientists have decoded the activity of protein signals that let certain nerve cells know when and where to branch so that they reach and connect to their correct muscle targets.


As fruit flies develop, motor neurons (green) extend from either side of their spinal-cord-like structures (left) to connect to muscle fibers (red), branching as they go.

Zhuhao Wu

The proteins’ mammalian counterparts are known to have signaling roles in immunity, nervous system and heart development, and tumor progression, suggesting broad implications for human disease research. A report of the research was published online Nov. 21 in the journal Neuron.

To control muscle movements, fruit flies, like other animals, have a set of nerve cells called motor neurons that connect muscle fibers to the nerve cord, a structure similar to the spinal cord, which in turn connects to the brain. During embryonic development, the nerve cells send wire-like projections, or axons, from the nerve cord structure out to their targets. Initially, multiple axons travel together in a convoy, but as they move forward, some axons must exit the “highway” at specific points to reach particular targets.

In their experiments, the researchers learned that axons travelling together have proteins on their surfaces that act like two-way radios, allowing the axons to communicate with each other and coordinate their travel patterns, thus ensuring that every muscle fiber gets connected to a nerve cell. “When axons fail to branch, or when they branch too early and too often, fruits flies, and presumably other animals, can be left without crucial muscle-nerve connections,” says Alex Kolodkin, Ph.D., a Howard Hughes investigator and professor of neuroscience at the Institute for Basic Biomedical Sciences at the Johns Hopkins University School of Medicine.

At the center of the communications system, Kolodkin says, is a protein called Sema-1a, already known to reside on the surface of motor neuron axons. If a neighboring axon has a different protein, called PlexA, on its surface, it will be repulsed by Sema-1a and will turn away from the axon bundle. So Sema-1a acts as an instructional signal and PlexA as its receptor. In the fruit fly study, the scientists discovered that Sema-1a can also act as a receptor for PlexA. “We used to think that this pair of surface proteins acted as a one-way radio, with information flowing in a single direction,” says Kolodkin. “What we found is that instructional information flows both ways.”

The Johns Hopkins team identified the “two-way” system by knocking out and otherwise manipulating fruit fly genes and then watching what happened to motor neuron branching. In these experiments, the researchers uncovered still other proteins located within the motor axons that Sema-1a interacts with after receiving a PlexA signal. When the gene for a protein called Pebble was deleted, for example, motor axons bunched together and didn’t branch. When the gene for RhoGAPp190 was deleted, motor axons branched too soon and failed to recognize their target muscles.

Through a series of biochemical tests, Kolodkin’s team found that Pebble and RhoGAPp190 both act on a third protein, Rho1. When Rho1 is activated, it collapses the supporting structures within an axon, making it “limp” and unable to continue toward a target. Sema-1a can bind to Pebble or to RhoGAPp190, and subsequently, these proteins can bind to Rho1. Binding to Pebble activates Rho1, causing axons to branch away from each other. However, binding to RhoGAPp190 shuts down Rho1, causing axons to remain bunched together. Thus, says Kolodkin, balance in the amounts of available Pebble and RhoGAPp190 can determine axon behavior, although what determines this balance is still unknown.

“This signaling is complex and we still don’t understand how it’s all controlled, but we’re one step closer now,” says Kolodkin. He notes that “a relative” of the Sema-1a protein in humans has already been implicated in schizophrenia, although details of this protein’s role in disease remain unclear. “Our experiments affirm how important this protein is to study and understand,” adds Kolodkin.

Other authors on the paper include Sangyun Jeong and Katarina Juhaszova of The Johns Hopkins University.

This work was supported by funds from the National Institute of Neurological Disorders and Stroke (R01 NS35165) and the Howard Hughes Medical Institute.

Media Contacts:
Catherine Kolf; 443-287-2251; ckolf@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Shawna Williams; 410-955-8236; shawna@jhmi.edu

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/news/media/releases/nerve_cell_branching_and_connectivity

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>