Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'Two-Way Radio' Directs Nerve Cell Branching And Connectivity

08.01.2013
Insect research yields insights for muscle control and nerve disorders in mammals, including humans

Working with fruit flies, Johns Hopkins scientists have decoded the activity of protein signals that let certain nerve cells know when and where to branch so that they reach and connect to their correct muscle targets.


As fruit flies develop, motor neurons (green) extend from either side of their spinal-cord-like structures (left) to connect to muscle fibers (red), branching as they go.

Zhuhao Wu

The proteins’ mammalian counterparts are known to have signaling roles in immunity, nervous system and heart development, and tumor progression, suggesting broad implications for human disease research. A report of the research was published online Nov. 21 in the journal Neuron.

To control muscle movements, fruit flies, like other animals, have a set of nerve cells called motor neurons that connect muscle fibers to the nerve cord, a structure similar to the spinal cord, which in turn connects to the brain. During embryonic development, the nerve cells send wire-like projections, or axons, from the nerve cord structure out to their targets. Initially, multiple axons travel together in a convoy, but as they move forward, some axons must exit the “highway” at specific points to reach particular targets.

In their experiments, the researchers learned that axons travelling together have proteins on their surfaces that act like two-way radios, allowing the axons to communicate with each other and coordinate their travel patterns, thus ensuring that every muscle fiber gets connected to a nerve cell. “When axons fail to branch, or when they branch too early and too often, fruits flies, and presumably other animals, can be left without crucial muscle-nerve connections,” says Alex Kolodkin, Ph.D., a Howard Hughes investigator and professor of neuroscience at the Institute for Basic Biomedical Sciences at the Johns Hopkins University School of Medicine.

At the center of the communications system, Kolodkin says, is a protein called Sema-1a, already known to reside on the surface of motor neuron axons. If a neighboring axon has a different protein, called PlexA, on its surface, it will be repulsed by Sema-1a and will turn away from the axon bundle. So Sema-1a acts as an instructional signal and PlexA as its receptor. In the fruit fly study, the scientists discovered that Sema-1a can also act as a receptor for PlexA. “We used to think that this pair of surface proteins acted as a one-way radio, with information flowing in a single direction,” says Kolodkin. “What we found is that instructional information flows both ways.”

The Johns Hopkins team identified the “two-way” system by knocking out and otherwise manipulating fruit fly genes and then watching what happened to motor neuron branching. In these experiments, the researchers uncovered still other proteins located within the motor axons that Sema-1a interacts with after receiving a PlexA signal. When the gene for a protein called Pebble was deleted, for example, motor axons bunched together and didn’t branch. When the gene for RhoGAPp190 was deleted, motor axons branched too soon and failed to recognize their target muscles.

Through a series of biochemical tests, Kolodkin’s team found that Pebble and RhoGAPp190 both act on a third protein, Rho1. When Rho1 is activated, it collapses the supporting structures within an axon, making it “limp” and unable to continue toward a target. Sema-1a can bind to Pebble or to RhoGAPp190, and subsequently, these proteins can bind to Rho1. Binding to Pebble activates Rho1, causing axons to branch away from each other. However, binding to RhoGAPp190 shuts down Rho1, causing axons to remain bunched together. Thus, says Kolodkin, balance in the amounts of available Pebble and RhoGAPp190 can determine axon behavior, although what determines this balance is still unknown.

“This signaling is complex and we still don’t understand how it’s all controlled, but we’re one step closer now,” says Kolodkin. He notes that “a relative” of the Sema-1a protein in humans has already been implicated in schizophrenia, although details of this protein’s role in disease remain unclear. “Our experiments affirm how important this protein is to study and understand,” adds Kolodkin.

Other authors on the paper include Sangyun Jeong and Katarina Juhaszova of The Johns Hopkins University.

This work was supported by funds from the National Institute of Neurological Disorders and Stroke (R01 NS35165) and the Howard Hughes Medical Institute.

Media Contacts:
Catherine Kolf; 443-287-2251; ckolf@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Shawna Williams; 410-955-8236; shawna@jhmi.edu

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/news/media/releases/nerve_cell_branching_and_connectivity

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>