Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'GPS' helps researchers probe processes important in aging and disease

08.09.2009
With all the hype about beneficial antioxidants in everything from face cream to cereal bars, you'd think their targets—oxygen radicals—must be up to no good. It's true, the buildup of oxygen radicals and other reactive oxygen species (ROS) in cells contributes to aging and possibly to diseases such as cancer and Alzheimer's.

But in moderate amounts, ROS also help keep cells healthy by controlling cell division, movement and other normal biological processes.

To better understand the role of ROS in disease, scientists first need to explore how ROS function in healthy cells, and research by a University of Michigan team led by chemical biologist Kate Carroll provides an important new tool for doing that. The research is described in a paper scheduled to be published Sept. 18 in the journal ACS Chemical Biology.

The tool, a small molecule called DAz-2, functions something like a subcellular GPS, helping researchers home in on the specific proteins that ROS affect.

The cells of all organisms, from bacteria and yeast to humans, sense ROS through a chemical modification process, known as oxidation, which influences how proteins interact with each other.

"While this overall phenomenon is widely accepted, scientists are still working to identify exactly which proteins are affected by ROS in living cells," said Carroll, assistant professor of chemistry and a research assistant professor in the Life Sciences Institute. Teasing out which proteins are modified and exactly how and where the modification takes place has been hindered by a lack of tools, but Carroll's group has developed a series of chemical probes for that purpose, of which DAz-2 is the latest.

"The new probes allow us to easily sort the proteins we want to analyze and study from other proteins that aren't modified by ROS." Carroll said.

Specifically, DAz-2 observes the oxidation of the protein building block cysteine to sulfenic acid, which can control how proteins behave and associate with other proteins. Because the modification of cysteine to sulfenic acid is so transient, it has been difficult to observe, and until recently scientists had identified only a few proteins undergoing this type of oxidation. But using DAz-2, which directly detects sulfenic acid in living cells, Carroll's group has identified more than 190 proteins, involved in diverse biological processes, that undergo this modification.

"This tool will allow the investigation of the oxidation of proteins in cellular signaling and many disease states, leading to greater understanding of how these processes operate," Carroll said. "These findings should pave the way for new therapeutic strategies to combat diseases that involve chronic oxidative stress and should lead to a better overall understanding of how cells work."

Carroll's coauthors on the paper are graduate student Stephen Leonard and postdoctoral fellow Khalilah Reddie. The researchers received funding from the Life Sciences Institute, the Leukemia & Lymphoma Society and the American Heart Association.

A paper published earlier this year in the journal Chemistry & Biology by Carroll and graduate student Candice Paulsen demonstrated the utility of this class of probes.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>