Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Find Potential Solution To Melanoma s Resistance To Vemurafenib

29.02.2012
Inhibitor XL888 found to restore chemotherapy sensitivity
Researchers at Moffitt Cancer Center in Tampa, Fla., and colleagues in California have found that the XL888 inhibitor can prevent resistance to the chemotherapy drug vemurafenib, commonly used for treating patients with melanoma.

Vemurafenib resistance is characterized by a diminished apoptosis (programmed cancer cell death) response. According to the researchers, the balance between apoptosis and cell survival is regulated by a family of proteins. The survival of melanoma cells is controlled, in part, by an anti-apoptotic protein (Mcl-1) that is regulated by a particular kind of inhibitor.

Their current findings, tested in six different models of vemurafenib resistance and in both test tube studies and in melanoma patients, demonstrated an induced apoptosis response and tumor regression when the XL888 inhibitor restored the effectiveness of vemurafenib.

The study appeared in a recent issue of Clinical Cancer Research, a publication of the American Association for Cancer Research.

"The impressive clinical response of melanoma patients to vemurafenib has been limited by drug resistance, a considerable challenge for which no management strategies previously existed," said study co-author Keiran S. M. Smalley, Ph.D., of Moffitt's departments of Molecular Oncology and Cutaneous Oncology. "However, we have demonstrated for the first time that the heat shock protein-90 (HSP90) inhibitor XL888 overcomes resistance through a number of mechanisms."

The diversity of resistance mechanism has been expected to complicate the design of future clinical trials to prevent or treat resistance to inhibitors such as vemurafenib.

"That expectation led us to hypothesize that inhibitor resistance might best be managed through broadly targeted strategies that inhibit multiple pathways simultaneously," explained Smalley.

The HSP90 family was known to maintain cancer cells by regulating cancer cells, making it a good target for treatment. According to the authors, the combination of vemurafenib and XL888 overcame vemurafenib resistance by targeting HSP90 through multiple signaling pathways.

There was already evidence that HSP90 inhibitors could overcome multiple drug chemotherapy resistance mechanisms in a number of cancers, including non-small lung cancer and breast cancer. Because XL888 is a novel, orally available inhibitor of HSP90, the researchers hoped that it would arrest the cancer cell cycle in melanoma cell lines.

In their study, the inhibition of HSP90 led to the degradation of the anti-apoptopiuc Mcl-1 protein. The responses to XL888 were characterized as "highly durable with no resistant colonies emerging following four weeks of continuous drug treatment." In other studies not using XL888, resistant colonies "emerged in every case," they reported.

"We have shown for the first time that all of the signaling proteins implicated in vemurafenib resistance are ‘clients' of HSP90 and that inhibition of HSP90 can restore sensitivity to vemurafenib," concluded Smalley and his colleagues. "Our study provides the rationale for the dual targeting of HSP90 with XL888 and vemurafenib in treating melanoma patients in order to limit or prevent chemotherapy resistance."

About Moffitt Cancer Center
Follow Moffitt on Facebook: www.facebook.com/MoffittCancerCenter
Follow Moffitt on Twitter: @MoffittNews
Follow Moffitt on YouTube: MoffittNews

Located in Tampa, Moffitt Cancer Center is a National Cancer Institute-designated Comprehensive Cancer Center, which recognizes Moffitt's excellence in research and contributions to clinical trials, prevention and cancer control. Moffitt is also a member of the National Comprehensive Cancer Network, a prestigious alliance of the country's leading cancer centers, and is listed in U.S. News & World Report as one of "America's Best Hospitals" for cancer.

Ferdie De Vega | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>