Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Find Possible Molecular Key to Regulation of Ovarian Cancer Stem Cells

27.09.2012
Researchers at Moffitt Cancer Center have discovered that the micro ribonucleic acid miR-214 plays a critical role in regulating ovarian cancer stem cell properties. This knowledge, said the researchers, could pave the way for a therapeutic target for ovarian cancer.

The study appears in a recent issue of the The Journal of Biological Chemistry.

According to the study’s lead author, Jin Q. Cheng, Ph.D., M.D., senior member of the Molecular Oncology Department and Molecular Oncology and Drug Discovery Program at Moffitt, certain miRNAs can cause therapeutic resistance and cancer metastasis by regulating multiple gene targets. Previous work has shown that one microRNA — miR-214 — is elevated in cancer. In ovarian cancer, up-regulated miR-214 has been associated with late-stage and high-grade tumors. In past research, miR-214 has also been associated with resistance to the chemotherapy drug cisplatin, but the role played by miR-214 in cancer stem cells had not been determined.

“Evidence suggests that cancer stem cells are responsible for cancer initiation, progression, metastasis, chemoresistance and relapse,” Cheng said. “Data are emerging to support the role of both miRNAs and transcription factor p53 in cancer stem cell regulation.”

Their current study found that miR-214 regulates ovarian cancer stem cell properties by direct repression of p53, which led to induction of a stem cell transcription factor (Nanog). The researchers demonstrated that p53 mediated miR-214-induced Nanog in ovarian cancer stem cells and also induced chemoresistance.

“It is plausible that miR-214 has an important influence on stem cells through its capacity to modulate p53,” explained Cheng. “Our study demonstrates direct evidence that miR-214 plays a critical role in maintaining ovarian cancer stem cells.”

Given that knowledge, the researchers concluded that miR-214 is a potential therapeutic target for treating ovarian cancer.

The research was supported in part by the National Cancer Institute, part of the National Institutes of Health (grant numbers CA135328 and CA114343) and the U.S. Army (W81XWH-11-1-0223).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>