Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Find Possible Molecular Key to Regulation of Ovarian Cancer Stem Cells

27.09.2012
Researchers at Moffitt Cancer Center have discovered that the micro ribonucleic acid miR-214 plays a critical role in regulating ovarian cancer stem cell properties. This knowledge, said the researchers, could pave the way for a therapeutic target for ovarian cancer.

The study appears in a recent issue of the The Journal of Biological Chemistry.

According to the study’s lead author, Jin Q. Cheng, Ph.D., M.D., senior member of the Molecular Oncology Department and Molecular Oncology and Drug Discovery Program at Moffitt, certain miRNAs can cause therapeutic resistance and cancer metastasis by regulating multiple gene targets. Previous work has shown that one microRNA — miR-214 — is elevated in cancer. In ovarian cancer, up-regulated miR-214 has been associated with late-stage and high-grade tumors. In past research, miR-214 has also been associated with resistance to the chemotherapy drug cisplatin, but the role played by miR-214 in cancer stem cells had not been determined.

“Evidence suggests that cancer stem cells are responsible for cancer initiation, progression, metastasis, chemoresistance and relapse,” Cheng said. “Data are emerging to support the role of both miRNAs and transcription factor p53 in cancer stem cell regulation.”

Their current study found that miR-214 regulates ovarian cancer stem cell properties by direct repression of p53, which led to induction of a stem cell transcription factor (Nanog). The researchers demonstrated that p53 mediated miR-214-induced Nanog in ovarian cancer stem cells and also induced chemoresistance.

“It is plausible that miR-214 has an important influence on stem cells through its capacity to modulate p53,” explained Cheng. “Our study demonstrates direct evidence that miR-214 plays a critical role in maintaining ovarian cancer stem cells.”

Given that knowledge, the researchers concluded that miR-214 is a potential therapeutic target for treating ovarian cancer.

The research was supported in part by the National Cancer Institute, part of the National Institutes of Health (grant numbers CA135328 and CA114343) and the U.S. Army (W81XWH-11-1-0223).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>