Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers Design Small Molecule to Disrupt Cancer-Causing Protein

26.03.2013
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida have developed a small molecule that inhibits STAT3, a protein that causes cancer. This development could impact the treatment of several tumor types, including breast, lung, prostate and others that depend on STAT3 for survival.
The study appeared in the Jan. 15 online issue of Cancer Research, a publication of the American Association for Cancer Research.

"STAT3 has been associated with poor prognosis and resistance to chemotherapy in patients with cancer,” explained Said M. Sebti, Ph.D., chair of the Drug Discovery Department at Moffitt. “Two STAT3 molecules need to bind to each other, a process called dimerization, to cause malignancy. We developed a small molecule called S3I-1757 to prevent dimerization by disrupting STAT3-STAT3 binding. Once disrupted, STAT3’s ability to help cancer cells survive, grow and invade is neutralized.”

“Activated STAT3 contributes to cancer at several levels,” said study co-author Nicholas J. Lawrence, Ph.D., senior member of Moffitt’s Drug Discovery Department. “It triggers the uncontrolled proliferation, invasion and spread of cancer cells. That makes STAT3 an attractive target for drug discovery and therapy.”

STAT3 was first found to be involved in malignant transformation in 1995, but researchers have been unable to develop an inhibitor for the protein. In part, the challenge stemmed from the fact that STAT3-STAT3 binding is a protein-protein interaction involving a large surface area, difficult to target with drug-like small molecules.

The researchers, who had been working on finding an inhibitor for STAT3-STAT3 dimerization for some time, recently overcame that challenge and demonstrated in laboratory studies that S31-1757 was effective in neutralizing STAT3’s activity.

“We used several approaches to demonstrate that S31-1757 is able to inhibit malignant transformation by its ability to inhibit the STAT3 function,” Sebti said. “These included targeting the ability of STAT3 to bind itself.”

Their findings will be presented at the annual AACR meeting in April in Washington, D.C.

This study was partially supported by a National Cancer Institute grant (R01CA140681).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>