Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt Cancer Center Researchers and Colleagues Identify PHF20, a Regulator of Gene P53

24.08.2012
Researchers at Moffitt Cancer Center and colleagues have identified PHF20, a novel transcriptional factor, and clarified its role in maintaining the stability and transcription of p53, a gene that allows for both normal cell growth and tumor suppression. PHF20, the researchers found, plays a previously unknown and unique role in regulating p53.

When p53 is activated, it can mend DNA damage and eliminate cancer cells by binding to DNA. How p53 maintains its basal level and becomes activated remain elusive, but identifying transcription factor PHF20 and understanding its interaction with p53 and its induction of p53 protein stability and transcription has provided a clue.

Results of their research appeared in a recent issue of Nature Structural & Molecular Biology and also in The Journal of Biological Chemistry.

“When a cell undergoes alterations that predispose it to become cancerous, p53 is activated to either mend the DNA damage or eliminate the affected cells, thereby preventing the development of tumors,” said Jin Q. Cheng, Ph.D., M.D., a senior member of the Molecular Oncology Department and Molecular Oncology and Drug Discovery Program at Moffitt. “A number of mechanisms normally keep a regulatory strong check on p53 and allow for rapid activation. Still much is unknown about the mechanism of p53 regulation.”

After identifying PHF20 as a novel transcriptional factor, the researchers set out in subsequent studies to probe the function of human PHF20 and its effect on p53. They found that PHF20 not only transcriptionally induces p53 but also directly interacts with and stabilizes p53. Akt negatively regulates these processes by interaction and phosphorylation of PHF20.

To determine whether the absence of PHF20 might regulate stress-induced p53 expression, the researchers “knocked down” PHF20. In doing so, they demonstrated that in the absence of PHF20, p53 was reduced. These findings established the role of PHF20 as a key regulator of p53 and additional link between Akt and p53.

According to Cheng, the identification of PHF20 as a regulator of p53 is significant because PHF20 “participates in simultaneous multiple interactions with other proteins and DNA” and serves to stabilize and induce p53.

“Regulation of p53 is critical to allow both normal cell growth and tumor suppression,” explained Cheng. “However, further investigation is required to understand PHF20 tumor suppressor function and its possible involvement in human malignancy.”

This work was supported in part by National Institutes of Health grants (CA137041, CA132878, CA77429, ES007784, and ES007247), the Florida James & Esther King Biomedical Research Program (1KG02) and the Cancer Prevention Research Institute of Texas (RP110471).
About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>