Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified Genetic Alphabet

19.07.2011
Chemical evolution generates bacterial strain with artificial nucleotide in its genome

Evolution is based on heredity, changes to the genetic material (mutation), and the natural selection of those organisms that are best suited to the given environmental conditions.


An international team led by Rupert Mutzel at the Freie Universität of Berlin has now successfully emulated one particular evolutionary process in the laboratory. As the researchers report in the journal Angewandte Chemie, they were able to generate a bacterial strain whose genetic material contains an artificial building block in place of a natural one. Their success results from a special automated cultivation technique.

DNA, the carrier of the genetic information of all cells, is based on a code consisting of four “letters”, the bases adenine, cytosine, guanine, and thymine. Thanks to their new artificial evolution process, the scientists have now been able to grow bacteria in which the thymine of DNA has been replaced with an analogue, the base 5-chlorouracil. This synthetic component is poisonous to other organisms.

The researchers started with a genetically modified strain of the bacterium Escherichia coli that is no longer capable of producing thymine. These microorganisms were cultivated over many generations in the presence of increasing amounts of chlorouracil in a specially built apparatus. Whenever the size of the population sank below a certain level, the bacteria were given a brief dose of a chlorouracil-free, thymine-containing medium to give them a chance to recover. The concentration of chlorouracil was automatically increased whenever genetic variants of the bacteria that better tolerated this substance were produced. In this way, the cells were always exposed to a quantity of chlorouracil that was just barely tolerable. After about 1000 generations, the microorganisms had adapted to the altered environmental conditions, that is, the presence of chlorouracil instead of thymine. They were able to build up their DNA with chlorouracil in place of thymine. Analysis of the genome showed that the process of adaptation resulted in many changes to the genetic material of the bacteria.

“Our results demonstrate the success of our evolutionary cultivation strategy,” says Mutzel. “In this way it should be possible to develop microorganisms that can convert chemical intermediates to pharmaceuticals or break down environmental pollutants.” Microorganisms that have DNA with synthetic building blocks may also be useful in hindering the spread of purposely or accidentally released modified cells in the environment. Such microorganisms would also be incapable of exchanging genes with their natural relatives.

Author: Rupert Mutzel, Freie Universität Berlin (Germany), http://www.biologie.fu-berlin.de/arbeitsgruppen/mikrobiologie/ag_

mutzel/personen/professoren/rupert_mutzel/index.html

Title: Chemical Evolution of a Bacterium's Genome
Angewandte Chemie International Edition 2011, 50, No. 31, 7109–7114,
Permalink to the article: http://dx.doi.org/10.1002/anie.201100535
Copy free of charge. We would appreciate a transcript of your article or a reference to it.

The original article is available from our online pressroom at http://pressroom.angewandte.org

Rupert Mutzel | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>