Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified Genetic Alphabet

19.07.2011
Chemical evolution generates bacterial strain with artificial nucleotide in its genome

Evolution is based on heredity, changes to the genetic material (mutation), and the natural selection of those organisms that are best suited to the given environmental conditions.


An international team led by Rupert Mutzel at the Freie Universität of Berlin has now successfully emulated one particular evolutionary process in the laboratory. As the researchers report in the journal Angewandte Chemie, they were able to generate a bacterial strain whose genetic material contains an artificial building block in place of a natural one. Their success results from a special automated cultivation technique.

DNA, the carrier of the genetic information of all cells, is based on a code consisting of four “letters”, the bases adenine, cytosine, guanine, and thymine. Thanks to their new artificial evolution process, the scientists have now been able to grow bacteria in which the thymine of DNA has been replaced with an analogue, the base 5-chlorouracil. This synthetic component is poisonous to other organisms.

The researchers started with a genetically modified strain of the bacterium Escherichia coli that is no longer capable of producing thymine. These microorganisms were cultivated over many generations in the presence of increasing amounts of chlorouracil in a specially built apparatus. Whenever the size of the population sank below a certain level, the bacteria were given a brief dose of a chlorouracil-free, thymine-containing medium to give them a chance to recover. The concentration of chlorouracil was automatically increased whenever genetic variants of the bacteria that better tolerated this substance were produced. In this way, the cells were always exposed to a quantity of chlorouracil that was just barely tolerable. After about 1000 generations, the microorganisms had adapted to the altered environmental conditions, that is, the presence of chlorouracil instead of thymine. They were able to build up their DNA with chlorouracil in place of thymine. Analysis of the genome showed that the process of adaptation resulted in many changes to the genetic material of the bacteria.

“Our results demonstrate the success of our evolutionary cultivation strategy,” says Mutzel. “In this way it should be possible to develop microorganisms that can convert chemical intermediates to pharmaceuticals or break down environmental pollutants.” Microorganisms that have DNA with synthetic building blocks may also be useful in hindering the spread of purposely or accidentally released modified cells in the environment. Such microorganisms would also be incapable of exchanging genes with their natural relatives.

Author: Rupert Mutzel, Freie Universität Berlin (Germany), http://www.biologie.fu-berlin.de/arbeitsgruppen/mikrobiologie/ag_

mutzel/personen/professoren/rupert_mutzel/index.html

Title: Chemical Evolution of a Bacterium's Genome
Angewandte Chemie International Edition 2011, 50, No. 31, 7109–7114,
Permalink to the article: http://dx.doi.org/10.1002/anie.201100535
Copy free of charge. We would appreciate a transcript of your article or a reference to it.

The original article is available from our online pressroom at http://pressroom.angewandte.org

Rupert Mutzel | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>