Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modified bone drug kills malaria parasite in mice

28.02.2012
A chemically altered osteoporosis drug may be useful in fighting malaria, researchers report in a new study.

Unlike similar compounds tested against many other parasitic protozoa, the drug readily crosses into the red blood cells of malaria-infected mice and kills the malaria parasite. The drug works at very low concentrations with no observed toxicity to the mouse.

The study appears in the Proceedings of the National Academy of Sciences.
The researchers found the drug by screening a library of about 1,000 compounds used in previous efforts to target an important biochemical pathway (called isoprenoid biosynthesis) in cancer and in disease-causing organisms. The new drug lead, BPH-703, inhibits a key enzyme in isoprenoid biosynthesis that enables the malaria parasite to sustain itself and defend itself from the host immune system. The drug has little effect on the same chemical pathway in human or mouse cells, said University of Illinois chemistry professor Eric Oldfield, who led the study.
The lead compounds are chemically modified forms of the osteoporosis drugs Actonel (Risedronate) and Zometa (Zoledronate), Oldfield said. Risedronate and Zoledronate potently block isoprenoid biosynthesis, but are unable to get across the membrane of red blood cells to get to the parasite. The modified forms include a long lipid tail that helps them pass through the lipid-rich membrane of red blood cells, and also enhances the drug’s ability to bind to the target enzyme, geranylgeranyl diphosphate synthase (GGPPS), he said.

“We found that compounds that were really active had a very long hydrocarbon chain,” Oldfield said. “These compounds can cross the cell membrane and work at very low concentrations.”

The World Health Organization estimates that malaria killed 708,000 to 1.003 million people in 2008, most of them in Sub-Saharan Africa and Asia. The malaria parasite has evolved resistance to nearly every drug used so far to combat it, and while some of these drugs still work – especially when used in combination – drug-resistant malaria strains are always emerging.

“It’s important to find new drug targets because malaria drugs last only a few years, maybe 10 years, before you start to get resistance,” Oldfield said. “The parasites mutate and then you lose your malaria drug.”

“We are the first to show that the enzyme GGPPS is a valid target for malaria,” said study co-author Yonghui Zhang, a research scientist in Oldfield’s lab and inventor of the lead compound, BPH-703. “Our work gives a new direction to find new antimalarial drugs.”

Editor’s notes: To reach Eric Oldfield, call: 217-333-3374;
email eoldfiel@illinois.edu.
The paper, “Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium GGPPS and exhibit potent anti-malarial activity,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>