Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modification of tumor suppressor affects sensitivity to potential GBM treatment

14.08.2012
Despite years of research, glioblastoma, the most common and deadly brain cancer in adults, continues to outsmart treatments targeted to inhibit tumor growth.

Biologists and oncologists have long understood that a protein called the epidermal growth factor receptor or EGFR is altered in at least 50 percent of patients with glioblastoma. Yet patients with glioblastoma either have upfront resistance or quickly develop resistance to inhibitors aimed at stopping the protein's function, suggesting that there is another signalling pathway at play.

Researchers from the Ludwig Institute for Cancer Research, the University of California, San Diego (UCSD) and Los Angeles (UCLA) and the University of São Paulo, Brazil published their findings on a mechanism that defines these types of resistance in the August 13 online issue of Proceedings of the National Academy of Sciences.

Previous research suggested that PTEN, a tumor suppressor gene, may be turned off in some cancer patients, disabling its function and potentially causing the resistance to EGFR inhibitors. "We asked ourselves, how is PTEN being modified? What is altering its function?," said Frank Furnari, PhD, corresponding author and Ludwig senior investigator based at UCSD.

The researchers focused on one type of modification called phosphorylation, the process by which some proteins are turned on and off. They mapped the sites where PTEN was changed or phosphorylated and subsequently developed an antibody that would recognize the PTEN protein when it was phosphorylated.

The team then put the antibody to the test. Together with Suely Marie, MD, at the University of São Paulo, they first evaluated a large series of clinical samples from patients with glioblastoma and found that the presence of phosphorylation was associated with shortened survival. Then with Paul Mischel, MD, at UCLA, they examined samples from a completely different series of patients who were EGFR positive and did not respond to EGFR-inhibitor treatment. The results confirmed that patients with modified PTEN had resistance to EGFR inhibitors.

"We think this modification of PTEN may become a useful marker to determine if a patient will respond or not to a growth factor receptor inhibitor," added Furnari. "If you can prevent phosphorylation, our studies showed that you have created a scenario where EGFR inhibitors will work better."

The team identified two enzymes responsible for turning off the brakes of PTEN – the fibroblast growth receptor and SRC family kinases. By understanding how these enzymes disable the suppressor function of the gene, scientists may be able to target different molecules that can intervene to stop resistance.

"The more we understand, the better we can conceive of ways to restore PTEN function in tumor cells and stop resistance to EGFR inhibitors in patients with glioblastoma," said lead author, Tim Fenton, PhD, who conducted this research while at the Ludwig Institute at UCSD and is currently at the University College London Cancer Institute.

According to Paul Mischel, who has since moved from UCLA to become a Ludwig member based at UCSD, "The study outcomes provide a potentially clinically targetable pathway. The findings enable us to move forward to identify and develop small molecule inhibitors for eventual use in combination with EGFR inhibitors for the treatment of glioblastoma and other cancers."

Funding for this research came from the Ludwig Institute for Cancer Research, the Goldhirsh Foundation, NIH Grants P01-CA95616 and P50-CA097257 and FAPESP grant 04/12433-6.

About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>