Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modern Genetics Vs. Ancient Frog-killing Fungus: Round One

15.10.2008
Scientists at the University of Idaho currently are involved in a CSI-like investigation of a killer known to have been running rampant for the past decade. But the killer’s name can’t be found on the FBI’s Most Wanted list. Instead, it’s on the minds of ecologists on every continent in the world.

Its name is Batrachochytrium dendrobatidis (Bd). It is a “chytrid” fungus that lives on keratin, a type of protein found in the skin of amphibians, and is particularly deadly for certain species of frogs. A summary of key findings from the 2004 Global Amphibian Assessment states that 43 percent of all frog species are declining in population, with less than 1 percent showing increases. Although there are many reasons for frog decline, including climate change and habitat loss, Bd seriously is affecting a growing number of species.

“This fungus is really bizarre,” said Erica Bree Rosenblum, assistant professor of biological sciences at the University of Idaho and lead author of the study published this week in the Proceedings of the National Academy of Sciences (PNAS). “It’s a member of an group of ancient fungi that are at least a half billion years old. But it only recently began killing amphibians and unequivocally is responsible for a lot of the catastrophic frog die-offs during the past decade.”

Previous studies have shown that once Bd is introduced to a habitat, up to 50 percent of amphibian species and 80 percent of individuals may die within one year. The fungus has been studied for the past decade, yet scientists still do not know much about how Bd kills its host.

However, Rosenblum’s new paper brings scientists one step closer to solving the mystery. The study uses some of the most advanced genetic technology available in an attempt to understand how the fungus works at the most basic level. It identifies several gene families for future study, including one strong candidate that may be a key element in the killing process.

Because the fungus is so ancient, it differs wildly from most species scientists study, and many of its genes have unknown functions. To combat these unknowns, Rosenblum and her colleagues sequenced Bd’s entire genome and compared the expression of genes in two phases of the fungus’s life - the zoospore and sporangia stages.

The zoospore stage is the earliest form of the fungus when it is just a single cell swimming around looking for a host on which to grow. Once it embeds itself into an amphibian’s skin, it grows into a more complex form called the sporangia stage. In this stage, Bd grows on the keratin in the frog’s skin, creating more zoospores to spread the disease and often killing the host.

By looking at which genes are turned on when the fungus actively is destroying the skin, but are turned off when the fungus is doing little more than swimming around, scientists hoped to find candidates for genes responsible for both spreading the fungus and killing the frogs.

“We care about the zoospores because that’s the stage it is swimming around and finding frogs to infect,” said Rosenblum. “And we care about the sporangia stage because that’s when Bd actually is killing the frogs.”

The study flags many genes as potentially important, but Rosenblum identifies one family as particularly interesting. The family of genes in question, known as fungalysin metallopeptidase, has only one or few representative in similar fungi that do not kill frogs. But in this deadly fungus, genes in the family appear 29 times. Additionally, the genes generally are turned on when the fungus is infecting frogs, but turned off in the zoospore stage.

Although this gene family is an excellent candidate for the pathogen’s killing ability, it is not certain. Discovering for sure which genes raise or lower the fungi’s killing ability is a long process, partly because the fungus is so far removed from other organisms in the evolutionary tree.

“This fungus is strange and different, partly because it is so ancient,” said Rosenblum. “One of the really amazing and wonderful things about this genetic technology is that we can take something we don’t know anything about, sequence its whole genome, look at what each gene is doing in different life stages, and learn a tremendous amount about the organism.”

Rosenblum and her team will continue their quest to stop Bd from killing off frog species in several ways. They currently are comparing active genes in Bd grown on frog skin to Bd grown in a test tube without exposure to keratin. Also, they plan to sequence genomes from different strains of Bd that kill less efficiently, or other, similar fungi that don’t kill amphibians at all.

They also will study the parasite from the other side of the coin – the frog’s point of view. By comparing different species of frogs, some of which are not killed by Bd, they hope to discover what genes make different species more or less susceptible to the fungus.

“The strength of these studies is the collaboration of ecologists and disease biologists,” said Rosenblum. “We are not just choosing one factor to study. Looking at absolutely every gene in the genome is now a financially and practically feasible thing to do.”

Rosenblum’s research is featured in the October 13-17 edition of PNAS Online Early Edition, article #08-04173. Read it online at http://www.pnas.org/early/recent

Ken Kingery | Newswise Science News
Further information:
http://www.uidaho.edu
http://www.pnas.org/early/recent

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>