Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models Begin to Unravel How Single DNA Strands Combine

08.10.2009
Using computer simulations, a team of University of Wisconsin-Madison researchers has identified some of the pathways through which single complementary strands of DNA interact and combine to form the double helix.

Present in the cells of all living organisms, DNA is composed of two intertwined strands and contains the genetic “blueprint” through which all living organisms develop and function. Individual strands consist of nucleotides, which include a base, a sugar and a phosphate moiety.

Understanding hybridization, the process through which single DNA strands combine to form a double helix is fundamental to biology and central to technologies such as DNA microchips or DNA-based nanoscale assembly. The research by the Wisconsin group begins to unravel how DNA strands come together and bind to each other, says Juan J. de Pablo, UW-Madison Howard Curler Distinguished Professor of Chemical and Biological Engineering.

The team published its findings today (Oct. 5), in the Proceedings of the National Academy of Sciences. In addition to senior author de Pablo, the group included David C. Schwartz, a UW-Madison professor of chemistry and genetics, and former postdoctoral research fellow Edward J. Sambriski, now an assistant professor of chemistry at Delaware Valley College in Pennsylvania.

The three drew on detailed molecular DNA models developed by de Pablo’s research group to study the reaction pathways through which double-stranded DNA undergo denaturation, where the molecule uncoils and separates into single strands, and hybridization, through which complementary DNA strands bind, or “hybridize.” In Watson-Crick base pairing, A (adenine) pairs with T (thymine), while G (guanine) pairs with C (cytosine). Reaction pathways are the trajectories single DNA strands follow to find each other and connect via such complementary pairs.

The researchers studied both random and repetitive base sequences. Random sequences of the four bases — A, T, G and C — contained little or no regular repetition. To the researchers’ surprise, a couple of bases located toward the center of the strand associate early in the hybridization process. The moment they find each other, they bind and the entire molecule hybridizes rapidly and in a highly organized manner.

Conversely, in repetitive sequences, the bases alternated regularly, and the group found that these sequences bind through a so-called diffusive process. “The two strands of DNA somehow find each other, they connect to each other in no particular order, and then they slide past each other for a long time until the exact complements find one another in the right order, and then they hybridize,” says de Pablo.

Results of the team’s study show that DNA hybridization is very sensitive to DNA composition, or sequence. “Contrary to what was thought previously, we found that the actual process by which complementary DNA strands hybridize is very sensitive to the sequence of the molecules,” he says.

Knowledge of how the process occurs could enable researchers to more strategically design technologies such as gene chips. For example, says de Pablo, if a researcher wanted to design sequences that bind very rapidly or with high efficiency, he or she could place certain bases in specific locations, so that the hybridization reaction could occur faster or more reliably.

Ultimately, the research could help biologists understand why some hybridization reactions are faster or more robust than others. “One of the really exciting things about this work is that the hybridization reaction between two strands of DNA is really fundamental to life itself,” says de Pablo. “It is the basis for much of biology. And it is amazing to me that, until now, we knew little of how this reaction actually proceeds.”

The National Science Foundation-funded Nanoscale Science and Engineering Center on Templated Synthesis and Assembly at the Nanoscale at UW-Madison sponsored the research.

Renee Meiller | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

Solar wind impacts on giant 'space hurricanes' may affect satellite safety

19.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>