Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Helps Cities Recover Lost Water Resources

24.03.2010
Clean water is scarce and becoming more so in many cities around the world. According to the World Health Organization, between 1990 and 2006, the number of urban dwellers without access to clean drinking water grew from 107 million to 137 million.

An RTI researcher says the first way to meet this fast-rising demand is to reduce losses from existing production rather than building more reservoirs and water treatment plants.

"Water from new plants and storage costs about three times as much as water from efficiency gains in existing production," said Alan Wyatt, RTI water supply and sanitation specialist. "If utilities recover the water that gets lost in distribution, they can sell that water, increase revenue, and serve more people while offsetting the need for new production capacity."

The World Bank estimates that less-developed countries lose about US$5.8 billion a year from "non-revenue" water that is not paid for because of physical losses (pipe leaks or bursts) and commercial losses, including unmetered public users, illegal connections, meter error, and unpaid bills.

However, utilities must weigh the costs of capturing this non-revenue water, through leak reduction, metering, and other tactics, against the savings and revenue they would recover.

A new financial model developed by RTI through self-funded research determines the optimal non-revenue water losses that a utility in a developing country should target, based on its unique scenario. The model also tells a utility how frequently it should carry out water loss-reducing tactics, like checking pipes for leaks and replacing water meters.

"The importance of the model is that utilities now have a rational target to aim for," said Wyatt.

Other models that calculate a utility's optimal non-revenue water do not account for commercial losses and require data that are not readily available in developing countries. Consequently, policymakers resort to generic targets for acceptable levels of water and revenue loss.

RTI's new model calculates the diminishing return of reducing non-revenue water losses for a specific utility by comparing the marginal costs of controlling physical and commercial losses to the marginal savings in production costs and the marginal revenues from water sales. For utilities that lack sufficient data to fill in all the parameters of the model, it estimates default values based on trends in developing countries.

An application of RTI's model to regional water utilities in Zambia revealed the three utilities with the worst non-revenue water losses, showing operators where to focus their attention. In these three regions, the production cost savings and increased revenue from optimizing water losses could pay for expanding distribution from 74% to 100% of the population.

"If utilities in developing countries fully exploit their existing capacity, they have the water and the finances to achieve the Millennium Development Goals for water coverage," said Wyatt. "Rather than building the next treatment plant, priority one should become making the water distribution system more efficient."

RTI is seeking to collaborate with donors and water utilities to refine its model and develop guidebooks for applying it. Those interested should contact Alan Wyatt at asw@rti.org.

About RTI International:
RTI International is one of the world’s leading research institutes, dedicated to improving the human condition by turning knowledge into practice. Our staff of more than 2,800 provides research and technical expertise to governments and businesses in more than 40 countries in the areas of health and pharmaceuticals, education and training, surveys and statistics, advanced technology, international development, economic and social policy, energy and the environment, and laboratory and chemistry services.

Lisa Bistreich | Newswise Science News
Further information:
http://www.rti.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>