Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Helps Cities Recover Lost Water Resources

24.03.2010
Clean water is scarce and becoming more so in many cities around the world. According to the World Health Organization, between 1990 and 2006, the number of urban dwellers without access to clean drinking water grew from 107 million to 137 million.

An RTI researcher says the first way to meet this fast-rising demand is to reduce losses from existing production rather than building more reservoirs and water treatment plants.

"Water from new plants and storage costs about three times as much as water from efficiency gains in existing production," said Alan Wyatt, RTI water supply and sanitation specialist. "If utilities recover the water that gets lost in distribution, they can sell that water, increase revenue, and serve more people while offsetting the need for new production capacity."

The World Bank estimates that less-developed countries lose about US$5.8 billion a year from "non-revenue" water that is not paid for because of physical losses (pipe leaks or bursts) and commercial losses, including unmetered public users, illegal connections, meter error, and unpaid bills.

However, utilities must weigh the costs of capturing this non-revenue water, through leak reduction, metering, and other tactics, against the savings and revenue they would recover.

A new financial model developed by RTI through self-funded research determines the optimal non-revenue water losses that a utility in a developing country should target, based on its unique scenario. The model also tells a utility how frequently it should carry out water loss-reducing tactics, like checking pipes for leaks and replacing water meters.

"The importance of the model is that utilities now have a rational target to aim for," said Wyatt.

Other models that calculate a utility's optimal non-revenue water do not account for commercial losses and require data that are not readily available in developing countries. Consequently, policymakers resort to generic targets for acceptable levels of water and revenue loss.

RTI's new model calculates the diminishing return of reducing non-revenue water losses for a specific utility by comparing the marginal costs of controlling physical and commercial losses to the marginal savings in production costs and the marginal revenues from water sales. For utilities that lack sufficient data to fill in all the parameters of the model, it estimates default values based on trends in developing countries.

An application of RTI's model to regional water utilities in Zambia revealed the three utilities with the worst non-revenue water losses, showing operators where to focus their attention. In these three regions, the production cost savings and increased revenue from optimizing water losses could pay for expanding distribution from 74% to 100% of the population.

"If utilities in developing countries fully exploit their existing capacity, they have the water and the finances to achieve the Millennium Development Goals for water coverage," said Wyatt. "Rather than building the next treatment plant, priority one should become making the water distribution system more efficient."

RTI is seeking to collaborate with donors and water utilities to refine its model and develop guidebooks for applying it. Those interested should contact Alan Wyatt at asw@rti.org.

About RTI International:
RTI International is one of the world’s leading research institutes, dedicated to improving the human condition by turning knowledge into practice. Our staff of more than 2,800 provides research and technical expertise to governments and businesses in more than 40 countries in the areas of health and pharmaceuticals, education and training, surveys and statistics, advanced technology, international development, economic and social policy, energy and the environment, and laboratory and chemistry services.

Lisa Bistreich | Newswise Science News
Further information:
http://www.rti.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>