Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MMRF and the Broad Institute to Perform Whole Genome Sequencing of Multiple Myeloma Samples

19.05.2009
The Multiple Myeloma Research Foundation (MMRF) announced today a collaboration with the Broad Institute of MIT and Harvard to systematically uncover the molecular changes underlying multiple myeloma by whole genome sequencing of individual patient tumors. The MMRF will provide both patient samples for analysis as well as funding for the project. All data from this collaboration will be put in the public domain.

“We are delighted to work with the MMRF, which has been a visionary organization in accelerating cancer research for the sake of patients and their families,” said Eric S. Lander, PhD, Director of the Broad Institute.

“Through our work together on this critical pilot project in whole cancer genome sequencing, we hope not only to advance clinical progress for multiple myeloma, but to build knowledge and technical capabilities that can be applied to many other human cancers.”

“Three years ago, the MMRF launched a partnership with the Broad Institute and the Translational Genomics Research Institute — the Multiple Myeloma Genomics Initiative — a comprehensive genome mapping program to identity new targets and eventually new therapies for this incurable disease,” said Kathy Giusti, Founder and CEO of the MMRF, and a multiple myeloma patient. “As part of that larger effort, we are confident that this groundbreaking research will accelerate the development of next-generation treatments to extend the lives of multiple myeloma patients. Additionally, we believe that this work will not only ultimately pave the way to a cure for patients with multiple myeloma, but will benefit patients with other types of cancer.”

The creation of comprehensive catalogs of all commonly occurring cancer mutations is a current approach of several national and international consortia, including The Cancer Genome Atlas (TCGA) led by the US National Institutes of Health and the International Cancer Genome Consortium (ICGC), to understand major tumor types such as leukemia, lung cancer, glioblastoma and others. To date, only a handful of whole cancer genomes have been sequenced and only one has been published.

“The few cancer genomes sequenced to date have been informative, but we need many more to transform cancer research and ultimately cancer therapy,” said Stacey Gabriel, PhD, Co-Director of the Broad Institute’s Genome Sequencing and Analysis Program. “This exciting collaboration with the MMRF will advance these goals by contributing public domain data.”

About the Broad Institute of MIT and Harvard
The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to www.broad.mit.edu.

About the Multiple Myeloma Research Foundation
The Multiple Myeloma Research Foundation (MMRF) was established in 1998 as a 501(c)3 non-profit organization by twin sisters Karen Andrews and Kathy Giusti, soon after Kathy's diagnosis with multiple myeloma. The mission of the MMRF is to relentlessly pursue innovative means that accelerate the development of next-generation multiple myeloma treatments to extend the lives of patients and lead to a cure. As the world's number-one private funder of multiple myeloma research, the MMRF has raised over $120 million since its inception to fund nearly 100 laboratories worldwide. An outstanding 93% of funds raised go toward research and related programming. The MMRF has supported 40 new compounds and approaches in clinical trials and pre- clinical studies and has facilitated 19 clinical trials through its sister organization, the Multiple Myeloma Research Consortium (MMRC). For more information about the MMRF, visit www.themmrf.org.
About the Multiple Myeloma Genomics Initiative
The Multiple Myeloma Genomics Initiative is a genome-mapping program designed to rapidly accelerate progress made against multiple myeloma by significantly improving the understanding of the biology of the disease. Spearheaded by the MMRF, based on analysis of samples from the MMRC’s tissue bank, and conducted in collaboration with the Translational Genomics Research Institute (TGen), the Multiple Myeloma Genomics Initiative comprises several research and discovery efforts spanning the spectrum of genomic science and is the most comprehensive research effort of its kind. Data is placed into the public domain in near-real time via the Multiple Myeloma Genomics Portal, the world's only myeloma-specific repository of genomic data.

Anne Quinn Young | Newswise Science News
Further information:
http://www.themmrf.org
http://www.broad.mit.edu
http://www.myelomagenomics.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>