Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MMRF and the Broad Institute to Perform Whole Genome Sequencing of Multiple Myeloma Samples

19.05.2009
The Multiple Myeloma Research Foundation (MMRF) announced today a collaboration with the Broad Institute of MIT and Harvard to systematically uncover the molecular changes underlying multiple myeloma by whole genome sequencing of individual patient tumors. The MMRF will provide both patient samples for analysis as well as funding for the project. All data from this collaboration will be put in the public domain.

“We are delighted to work with the MMRF, which has been a visionary organization in accelerating cancer research for the sake of patients and their families,” said Eric S. Lander, PhD, Director of the Broad Institute.

“Through our work together on this critical pilot project in whole cancer genome sequencing, we hope not only to advance clinical progress for multiple myeloma, but to build knowledge and technical capabilities that can be applied to many other human cancers.”

“Three years ago, the MMRF launched a partnership with the Broad Institute and the Translational Genomics Research Institute — the Multiple Myeloma Genomics Initiative — a comprehensive genome mapping program to identity new targets and eventually new therapies for this incurable disease,” said Kathy Giusti, Founder and CEO of the MMRF, and a multiple myeloma patient. “As part of that larger effort, we are confident that this groundbreaking research will accelerate the development of next-generation treatments to extend the lives of multiple myeloma patients. Additionally, we believe that this work will not only ultimately pave the way to a cure for patients with multiple myeloma, but will benefit patients with other types of cancer.”

The creation of comprehensive catalogs of all commonly occurring cancer mutations is a current approach of several national and international consortia, including The Cancer Genome Atlas (TCGA) led by the US National Institutes of Health and the International Cancer Genome Consortium (ICGC), to understand major tumor types such as leukemia, lung cancer, glioblastoma and others. To date, only a handful of whole cancer genomes have been sequenced and only one has been published.

“The few cancer genomes sequenced to date have been informative, but we need many more to transform cancer research and ultimately cancer therapy,” said Stacey Gabriel, PhD, Co-Director of the Broad Institute’s Genome Sequencing and Analysis Program. “This exciting collaboration with the MMRF will advance these goals by contributing public domain data.”

About the Broad Institute of MIT and Harvard
The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to www.broad.mit.edu.

About the Multiple Myeloma Research Foundation
The Multiple Myeloma Research Foundation (MMRF) was established in 1998 as a 501(c)3 non-profit organization by twin sisters Karen Andrews and Kathy Giusti, soon after Kathy's diagnosis with multiple myeloma. The mission of the MMRF is to relentlessly pursue innovative means that accelerate the development of next-generation multiple myeloma treatments to extend the lives of patients and lead to a cure. As the world's number-one private funder of multiple myeloma research, the MMRF has raised over $120 million since its inception to fund nearly 100 laboratories worldwide. An outstanding 93% of funds raised go toward research and related programming. The MMRF has supported 40 new compounds and approaches in clinical trials and pre- clinical studies and has facilitated 19 clinical trials through its sister organization, the Multiple Myeloma Research Consortium (MMRC). For more information about the MMRF, visit www.themmrf.org.
About the Multiple Myeloma Genomics Initiative
The Multiple Myeloma Genomics Initiative is a genome-mapping program designed to rapidly accelerate progress made against multiple myeloma by significantly improving the understanding of the biology of the disease. Spearheaded by the MMRF, based on analysis of samples from the MMRC’s tissue bank, and conducted in collaboration with the Translational Genomics Research Institute (TGen), the Multiple Myeloma Genomics Initiative comprises several research and discovery efforts spanning the spectrum of genomic science and is the most comprehensive research effort of its kind. Data is placed into the public domain in near-real time via the Multiple Myeloma Genomics Portal, the world's only myeloma-specific repository of genomic data.

Anne Quinn Young | Newswise Science News
Further information:
http://www.themmrf.org
http://www.broad.mit.edu
http://www.myelomagenomics.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>