Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixing Artificial Sweeteners Inhibits Bitter Taste Receptors

15.09.2017

Blends of artificial sweeteners such as saccharin and cyclamate produce less of a bitter off-taste than each of the individual components, but the explanation for this puzzling phenomenon has been elusive ever since its discovery more than 60 years ago. A study published September 14th in the journal Cell Chemical Biology solves this long-standing mystery, revealing that saccharin inhibits the activity of bitter taste receptors stimulated by cyclamate and, conversely, that cyclamate reduces the off-taste elicited by saccharin.

“Numerous sweeteners exhibit undesirable off-tastes, limiting their use in food products and beverages,” says lead author Maik Behrens of the German Institute of Human Nutrition Potsdam-Rehbruecke. “Our findings in this study provide us with the tools and knowledge to find ways leading to superior sweetener blends.”


Artificial Sweetener: Saccharin

High-potency sweeteners are widely used to replace energy-rich, tooth-decay-inducing sugars in food items to meet the requirements of health-conscious consumers. But in addition to stimulating sweet taste receptors, sugar substitutes also activate bitter taste receptors (known as TAS2Rs) at high concentrations, resulting in an undesired off-taste. To overcome this problem, the food industry is constantly searching for novel sugar substitutes and frequently resorts to using blends combining non-caloric sweeteners in a single formulation.

The earliest blend allowing higher sweetness levels with reduced bitter off-taste combined saccharin with cyclamate. But since this discovery 62 years ago, the mechanism by which sweetener blends become superior to single compounds has remained obscure. A clue to this mystery came when Behrens and his team discovered that some bitter compounds not only activate a subset of the 25 human bitter taste receptors, but also can inhibit different bitter taste receptors.

“Knowing that mixtures of saccharin and cyclamate exert reduced bitterness compared to the single compounds raised the question [of] whether this might be due to mutual inhibition of bitter taste receptor responses,” Behrens says.

To explore this possibility, Behrens and senior author Wolfgang Meyerhof of the German Institute of Human Nutrition Potsdam-Rehbruecke expressed various human taste receptors in human cells and tested their responses to different concentrations of saccharin and cyclamate. Using this cell-based system, they discovered that cyclamate strongly inhibits the saccharin-induced activation of two bitter taste receptors called TAS2R31 and TAS2R43. This effect occurred at concentrations where cyclamate itself does not elicit a side taste. Similarly, saccharin blocked the cyclamate-induced responses of a bitter taste receptor called TAS2R1.

“Saccharin and cyclamate belong to the oldest-known high-potency synthetic sweeteners, and we were able to discover with our cell assay completely novel features of these molecules, namely their bitter-blocking ability,” Behrens says.

For the time being, it remains unclear whether the components of other sweetener blends also show mutual inhibition of bitter taste receptors. “Once the activation and inhibition profiles of the 25 human bitter taste receptors have been investigated in great detail, it will be possible to tailor the composition of mixtures to develop novel sweetener formulations and to improve the taste of medicine,” Meyerhof says.


Funding was provided by the European Union’s Seventh Framework Programme.
Cell Chemical Biology, Behrens et al.: “Blends of Non-caloric Sweeteners Saccharin and Cyclamate Show Reduced Off-Taste due to TAS2R Bitter Receptor Inhibition” <http://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(17)30278-7 DOI: 10.1016/j.chembiol.2017.08.004>

Cell Chemical Biology (@CellChemBiol), published by Cell Press, is a monthly journal publishing research and review content of exceptional interest for the chemical biology community. The journal's mission is to support and promote chemical biology and drive conversation and collaboration between chemical and life sciences. Visit: http://www.cell.com/chemistry-biology. To receive Cell Press media alerts, contact press@cell.com.

• • •

Author Contact:

Dr. Maik Behrens
German Institute of Human Nutrition Potsdam-Rehbruecke
Dept. Molecular Genetics
Arthur-Scheunert-Allee 114-116
14558 Nuthetal, Germany
phone: +49 (0)33200 88 2545
e-mail: behrens@dife.de

Prof. Dr. Wolfgang Meyerhof
German Institute of Human Nutrition Potsdam-Rehbruecke
Dept. Molecular Genetics
Arthur-Scheunert-Allee 114-116
14558 Nuthetal, Germany
phone: +49 (0)33200 88 2282
e-mail: meyerhof@dife.de

Media Contact:

Dr. Gisela Olias
Press and Public Relations Coordinator
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
phone: +49 (0)33200 88-2278/-2335
e-mail: olias@dife.de
or presse@dife.de

Media Contact:
Joseph Caputo | Press Office | Cell Press
617-397-2802 | jcaputo@cell.com | press@cell.com

Weitere Informationen:

http://www.dife.de/forschung/abteilungen/kurzprofil.php?abt=MOGE&lang=en Department of Molecular Genetics at the German Intistute of Human Nutrition

Dr. Gisela Olias | idw - Informationsdienst Wissenschaft

Further reports about: Cell Chemical Biology Ernährungsforschung Sweeteners

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>