Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mitosis mystery solved as role of key protein is confirmed

Researchers from Warwick Medical School have discovered the key role of a protein in shutting down endocytosis during mitosis, answering a question that has evaded scientists for half a century.

The study, published today in the journal eLife, is the first to outline the role of actin, a protein, in shutting down clathrin-dependent endocytosis during mitosis.

This shows restarted endocytosis in a mitotic cell.

Credit: Royle/University of Warwick

Endocytosis is the process by which cells absorb molecules that are too large to pass through the plasma membrane, such as proteins. Clathrin-dependent endocytosis is the most common route for this. Clathrin, a protein, forms a pit on the inner surface of the membrane which allows the cell to engulf and bring in a small volume of fluid from outside the cell.

The team, led by Dr Steve Royle, were able to answer a question that was first asked in 1965 by American cell biologist, Don Fawcett. Fawcett became aware that clathrin-dependent endocytosis shuts down during mitosis, but the understanding of why it happens has eluded researchers until now.

In the latter part of the 20th Century, two competing theories emerged. One theory suggested that the tension of the plasma membrane is too high for endocytosis to occur. The other theory stated that the cell actually switches off the proteins involved by a process of mitotic phosphorylation, the addition of a phosphate group to the cell proteins.

More recently, scientists found that in non-dividing cells, when membrane tension is high, endocytosis can still occur because actin can be recruited to help clathrin to overcome the high tension in the membrane.

The Warwick team measured membrane tension in mitotic cells and found it to be much higher than in non-dividing cells, thus sparking the investigation into why actin is not recruited to help out in this case. They found that during mitosis, actin is busy forming a stiff cortex in the cells and so cannot be used to help out endocytosis. In other words, actin is needed, but is unavailable for use.

By tricking the cell into making actin available during mitosis, the researchers were able to restart endocytosis in mitotic cells. The paper also describes how mitotic phosphorylation does not inhibit the process, arguing against the alternative theory.

The newfound appreciation for the role played by actin opens the door for further developments, both for researchers and for possible clinical applications.

Dr Royle explained, "The implications for human health are truly fascinating; by knowing the role played by actin we can look to use it to restart endocytosis during cell division. That could mean that we're able to make dividing cells receptive to pharmaceuticals or other medical treatments in a way that we haven't before."

"It also opens up other strands of research and questions for our field. For instance, how does the cell know that the membrane tension is too high for normal endocytosis? When and how does it call in actin? There is plenty we are yet to discover."

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Luke Harrison | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>