Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitosis mystery solved as role of key protein is confirmed

18.02.2014
Researchers from Warwick Medical School have discovered the key role of a protein in shutting down endocytosis during mitosis, answering a question that has evaded scientists for half a century.

The study, published today in the journal eLife, is the first to outline the role of actin, a protein, in shutting down clathrin-dependent endocytosis during mitosis.


This shows restarted endocytosis in a mitotic cell.

Credit: Royle/University of Warwick

Endocytosis is the process by which cells absorb molecules that are too large to pass through the plasma membrane, such as proteins. Clathrin-dependent endocytosis is the most common route for this. Clathrin, a protein, forms a pit on the inner surface of the membrane which allows the cell to engulf and bring in a small volume of fluid from outside the cell.

The team, led by Dr Steve Royle, were able to answer a question that was first asked in 1965 by American cell biologist, Don Fawcett. Fawcett became aware that clathrin-dependent endocytosis shuts down during mitosis, but the understanding of why it happens has eluded researchers until now.

In the latter part of the 20th Century, two competing theories emerged. One theory suggested that the tension of the plasma membrane is too high for endocytosis to occur. The other theory stated that the cell actually switches off the proteins involved by a process of mitotic phosphorylation, the addition of a phosphate group to the cell proteins.

More recently, scientists found that in non-dividing cells, when membrane tension is high, endocytosis can still occur because actin can be recruited to help clathrin to overcome the high tension in the membrane.

The Warwick team measured membrane tension in mitotic cells and found it to be much higher than in non-dividing cells, thus sparking the investigation into why actin is not recruited to help out in this case. They found that during mitosis, actin is busy forming a stiff cortex in the cells and so cannot be used to help out endocytosis. In other words, actin is needed, but is unavailable for use.

By tricking the cell into making actin available during mitosis, the researchers were able to restart endocytosis in mitotic cells. The paper also describes how mitotic phosphorylation does not inhibit the process, arguing against the alternative theory.

The newfound appreciation for the role played by actin opens the door for further developments, both for researchers and for possible clinical applications.

Dr Royle explained, "The implications for human health are truly fascinating; by knowing the role played by actin we can look to use it to restart endocytosis during cell division. That could mean that we're able to make dividing cells receptive to pharmaceuticals or other medical treatments in a way that we haven't before."

"It also opens up other strands of research and questions for our field. For instance, how does the cell know that the membrane tension is too high for normal endocytosis? When and how does it call in actin? There is plenty we are yet to discover."

The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Luke Harrison | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>