Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team builds most complex synthetic biology circuit yet

10.10.2012
New sensor can detect four different molecules, could be used to program cells to precisely monitor their environments.

Using genes as interchangeable parts, synthetic biologists design cellular circuits that can perform new functions, such as sensing environmental conditions. However, the complexity that can be achieved in such circuits has been limited by a critical bottleneck: the difficulty in assembling genetic components that don’t interfere with each other.


MIT biological engineers created new genetic circuits using genes found in Salmonella (seen here) and other bacteria.
Image: NIH

Unlike electronic circuits on a silicon chip, biological circuits inside a cell cannot be physically isolated from one another. “The cell is sort of a burrito. It has everything mixed together,” says Christopher Voigt, an associate professor of biological engineering at MIT.

Because all the cellular machinery for reading genes and synthesizing proteins is jumbled together, researchers have to be careful that proteins that control one part of their synthetic circuit don’t hinder other parts of the circuit.

Voigt and his students have now developed circuit components that don’t interfere with one another, allowing them to produce the most complex synthetic circuit ever built. The circuit, described in the Oct. 7 issue of Nature, integrates four sensors for different molecules. Such circuits could be used in cells to precisely monitor their environments and respond appropriately.

“It’s incredibly complex, stitching together all these pieces,” says Voigt, who is co-director of the Synthetic Biology Center at MIT. Larger circuits would require computer programs that Voigt and his students are now developing, which should allow them to combine hundreds of circuits in new and useful ways.

Lead author of the paper is former MIT postdoc Tae Seok Moon, now an assistant professor of energy, environmental and chemical engineering at Washington University in St. Louis. Other authors are MIT postdocs Chunbo Lou and Brynne Stanton, and Alvin Tamsir, a graduate student at the University of California at San Francisco.

Expanding the possibilities

Previously, Voigt has designed bacteria that can respond to light and capture photographic images, and others that can detect low oxygen levels and high cell density — both conditions often found in tumors. However, no matter the end result, most of his projects, and those of other synthetic biologists, use a small handful of known genetic parts. “We were just repackaging the same circuits over and over again,” Voigt says.

To expand the number of possible circuits, the researchers needed components that would not interfere with each other. They started out by studying the bacterium that causes salmonella, which has a cellular pathway that controls the injection of proteins into human cells. “It’s a very tightly regulated circuit, which is what makes it a good synthetic circuit,” Voigt says.

The pathway consists of three components: an activator, a promoter and a chaperone. A promoter is a region of DNA where proteins bind to initiate transcription of a gene. An activator is one such protein. Some activators also require a chaperone protein before they can bind to DNA to initiate transcription.

The researchers found 60 different versions of this pathway in other species of bacteria, and found that most of the proteins involved in each were different enough that they did not interfere with one another. However, there was a small amount of crosstalk between a few of the circuit components, so the researchers used an approach called directed evolution to reduce it. Directed evolution is a trial-and-error process that involves mutating a gene to create thousands of similar variants, then testing them for the desired trait. The best candidates are mutated and screened again, until the optimal gene is created.

Aindrila Mukhopadhyay, a staff scientist at Lawrence Berkeley National Laboratory, says the amount of troubleshooting the researchers did to create each functional module is impressive. “A lot of people are charmed by the idea of creating complex genetic circuits. This study provides valuable examples of the types of optimizations that they may have to do in order to accomplish such goals,” says Mukhopadhyay, who was not part of the research team.

Layered circuits

To design synthetic circuits so they can be layered together, their inputs and outputs must mesh. With an electrical circuit, the inputs and outputs are always electricity. With these biological circuits, the inputs and outputs are proteins that control the next circuit (either activators or chaperones).

These components could be useful for creating circuits that can sense a variety of environmental conditions. “If a cell needs to find the right microenvironment — glucose, pH, temperature and osmolarity [solute concentration] — individually they’re not very specific, but getting all four of those things really narrows it down,” Voigt says.

The researchers are now applying this work to create a sensor that will allow yeast in an industrial fermenter to monitor their own environment and adjust their output accordingly.

The research was funded by the U.S. Office of Naval Research, the National Institutes of Health, Life Technologies, Defense Advanced Research Projects Agency and the National Science Foundation.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/newsoffice/2012/complex-biological-circuit-1007.html

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>