Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT researchers find that Sirtuin1 may boost memory and learning ability

Discovery could lead to new drugs to fight Alzheimer's, other neurological diseases

The same molecular mechanism that increases life span through calorie restriction may help boost memory and brainpower, researchers at MIT's Picower Institute for Learning and Memory report in the July 11 issue of Nature.

Resveratrol, found in wine, has been touted as a life-span enhancer because it activates a group of enzymes known as sirtuins, which have gained fame in recent years for their ability to slow the aging process. Now MIT researchers report that Sirtuin1 — a protein that in humans is encoded by the SIRT1 gene — also promotes memory and brain flexibility.

The work may lead to new drugs for Alzheimer's disease and other debilitating neurological diseases.

"We demonstrated previously that Sirtuin1 promotes neuronal survival in age-dependent neurodegenerative disorders. In our cell and mouse models for Alzheimer's disease, SIRT1 promoted neuronal survival, reduced neurodegeneration and prevented learning impairment," said Li-Huei Tsai, director of the Picower Institute and lead author of the study.

"We have now found that SIRT1 activity also promotes plasticity and memory," said Tsai, Picower Professor of Neuroscience and a Howard Hughes Medical Institute investigator. "This result demonstrates a multi-faceted role of SIRT1 in the brain, further highlighting its potential as a target for the treatment of neurodegeneration and conditions with impaired cognition, with implications for a wider range of central nervous system disorders."

In separate work at MIT, researchers discovered that the sir2 (silent information regulator) gene is a key regulator of longevity in both yeast and worms. Ongoing studies are exploring whether this highly conserved gene also governs longevity in mammals.

The mammalian version of the gene, SIRT1, seems to have evolved complex systemic roles in cardiac function, DNA repair and genomic stability. SIRT1 is thought to be a key regulator of an evolutionarily conserved pathway that allows organisms to cope with adversity. These genes and the enzymes they produce are part of a feedback system that enhances cell survival during times of stress, especially a lack of food.

Recent studies linked SIRT1 to normal brain physiology and neurological disorders. However, it was unknown if SIRT1 played a role in higher-order brain functions.

The Picower Institute study shows that SIRT1 enhances synaptic plasticity, the connections among neurons, and memory formation. These findings demonstrate a new role for SIRT1 in cognition and a previously unknown mechanism by which SIRT1 regulates these processes.

MicroRNAs are small RNA molecules encoded in the genomes of plants and animals. These gene regulators are involved in many aspects of normal and abnormal brain function. The Picower study found that SIRT1 aids memory and synaptic plasticity through a previously unknown microRNA-based mechanism: SIRT1 keeps a specific microRNA in check, allowing key plasticity proteins to be expressed.

In addition to helping neurons survive, SIRT1 also has a direct role in regulating normal brain function, demonstrating its value as a potential therapeutic target for the treatment of the central nervous system.

Source: "A novel pathway regulates memory and plasticity via SIRT1 and miR-134," Jun Gao Wen-Yuan Wang, Ying-Wei Mao, Johannes Gräff, Ji-Song Guan, Ling Pan, Gloria Mak, Dohoon Kim, Susan C. Su and Li-Huei Tsai, in the July 11 issue of Nature.

Jennifer Hirsch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>