Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers develop a better way to grow stem cells

23.08.2010
New synthetic surfaces overcome challenges posed by existing methods

Human pluripotent stem cells, which can become any other kind of body cell, hold great potential to treat a wide range of ailments, including Parkinson's disease, multiple sclerosis and spinal cord injuries.

However, scientists who work with such cells have had trouble growing large enough quantities to perform experiments — in particular, to be used in human studies. Furthermore, most materials now used to grow human stem cells include cells or proteins that come from mice embryos, which help stimulate stem-cell growth but would likely cause an immune reaction if injected into a human patient.

To overcome those issues, MIT chemical engineers, materials scientists and biologists have devised a synthetic surface that includes no foreign animal material and allows stem cells to stay alive and continue reproducing themselves for at least three months. It's also the first synthetic material that allows single cells to form colonies of identical cells, which is necessary to identify cells with desired traits and has been difficult to achieve with existing materials.

The research team, led by Professors Robert Langer, Rudolf Jaenisch and Daniel G. Anderson, describes the new material in the Aug. 22 issue of Nature Materials. First authors of the paper are postdoctoral associates Ying Mei and Krishanu Saha.

Human stem cells can come from two sources — embryonic cells or body cells that have been reprogrammed to an immature state. That state, known as pluripotency, allows the cells to develop into any kind of specialized body cells.

It also allows the possibility of treating nearly any kind of disease that involves injuries to cells. Scientists could grow new neurons for patients with spinal cord injuries, for example, or new insulin-producing cells for people with type 1 diabetes.

To engineer such treatments, scientists would need to be able to grow stem cells in the lab for an extended period of time, manipulate their genes, and grow colonies of identical cells after they have been genetically modified. Current growth surfaces, consisting of a plastic dish coated with a layer of gelatin and then a layer of mouse cells or proteins, are notoriously inefficient, says Saha, who works in Jaenisch's lab at the Whitehead Institute for Biomedical Research.

"For therapeutics, you need millions and millions of cells," says Saha. "If we can make it easier for the cells to divide and grow, that will really help to get the number of cells you need to do all of the disease studies that people are excited about."

Previous studies had suggested that several chemical and physical properties of surfaces — including roughness, stiffness and affinity for water — might play a role in stem-cell growth. The researchers created about 500 polymers (long chains of repeating molecules) that varied in those traits, grew stem cells on them and analyzed each polymer's performance. After correlating surface characteristics with performance, they found that there was an optimal range of surface hydrophobicity (water-repelling behavior), but varying roughness and stiffness did not have much effect on cell growth.

They also adjusted the composition of the materials, including proteins embedded in the polymer. They found that the best polymers contained a high percentage of acrylates, a common ingredient in plastics, and were coated with a protein called vitronectin, which encourages cells to attach to surfaces.

Using their best-performing material, the researchers got stem cells (both embryonic and induced pluripotent) to continue growing and dividing for up to three months. They were also able to generate large quantities of cells — in the millions.

The MIT researchers hope to refine their knowledge to help them build materials suited to other types of cells, says Anderson, from the MIT Department of Chemical Engineering, the Harvard-MIT Division of Health Sciences and Technology, and the David H. Koch Institute for Integrative Cancer Research. "We want to better understand the interactions between the cell, the surface and the proteins, and define more clearly what it takes to get the cells to grow," he says.

Other MIT authors of the paper are Said Bogatyrev, Z. Ilke Kalcioglu, Maisam Mitalipova, Neena Pyzocha, Fredrick Rojas and Krystyn Van Vliet. Jing Yang, Andrew Hook, Martyn Davies and Morgan Alexander of the University of Nottingham (United Kingdom) and Seung-Woo Cho of Yonsei University (Korea) are also authors of the paper.

Source: "Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells" by Ying Mei, Krishanu Saha, Said R. Bogatyrev, Jing Yang, Andrew L. Hook, Z. Ilke Kalcioglu, Seung-Woo Cho, Maisam Mitalipova, Neena Pyzocha, Fredrick Rojas, Krystyn J. Van Vliet, Martyn C. Davies, Morgan R. Alexander, Robert Langer, Rudolf Jaenisch and Daniel G. Anderson. Nature Materials, 22 August, 2010.

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>