Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT chemists find an easier way to synthesize new drug candidates

25.06.2010
New method could have a big impact on pharmaceutical business

Some drugs may be more effective the longer they last inside the body. To prevent such drugs from being broken down too rapidly, pharmaceutical manufacturers often attach a fluorine-containing structure called a trifluoromethyl group. However, the processes now used require harsh reaction conditions or only work in a small number of cases, limiting their usefulness for synthesizing new drug candidates for testing.

Now, MIT chemists have designed a new way to attach a trifluoromethyl group to certain compounds, which they believe could allow pharmaceutical companies to create and test new drugs much faster and potentially reduce the cost of drug discovery. The new synthesis, reported in the June 25 issue of Science, could have an immediate impact.

MIT Chemistry Professor Stephen Buchwald, who led the research team, says achieving the synthesis has been a long-standing challenge for chemists. "Some people said it couldn't be done, so that's a good reason to try," says Buchwald, the Camille Dreyfus Professor of Chemistry at MIT.

Eun Jin Cho, a postdoctoral associate in Buchwald's lab, is the lead author of the paper. Other authors are graduate student Todd Senecal, postdoctoral associates Tom Kinzel and Yong Zhang, and former postdoctoral associate Donald Watson, now an assistant professor of chemistry at the University of Delaware.

The trifluoromethyl group (abbreviated CF3) is a component of several commonly used drugs, including the antidepressant Prozac, arthritis medication Celebrex and Januvia, used to treat diabetes symptoms.

When foreign compounds such as drugs enter the body, they get sent to the liver, where they are broken down and shipped on to the kidneys for excretion. However, CF3 groups are hard for the body to break down because they contain three fluorine atoms. "Fluorine is not really a component of things we eat, so the body does not know what to do with it," says Kinzel.

CF3 groups are also a common component of agricultural chemicals such as pesticides. To add a CF3 group to organic (carbon-containing) molecules, chemists often use hydrogen fluoride under conditions that might produce undesired reactions among the many structural components found in complex molecules like pharmaceuticals or agrochemicals.

With the new reaction, the CF3 group can be added at a much later stage of the overall drug synthesis. The reaction can also be used with a broad range of starting materials, giving drug developers much more flexibility in designing new compounds.

Chemists have been trying to find a widely applicable catalytic method to attach CF3 to aryl compounds (compounds containing one or more six-carbon rings) for a couple of decades. Some have achieved different parts of the reaction, but none successfully put all the pieces together to arrive at a method that is applicable for a wide range of different aryl compounds. The major challenge has been finding a suitable catalyst (a molecule that speeds up a reaction) to transfer the CF3 entity from another source to the carbon ring.

CF3– (trifluoromethyl negative ion) tends to be unstable when detached from other molecules, so the catalyst must act quickly to transfer the CF3 group before it decomposes. The MIT team chose to use a catalyst built from palladium, a silvery-white metal commonly used in catalytic converters. The MIT team is not the first to try palladium catalysis for this reaction, but the key to their success was the use of a ligand (a molecule that binds to the metal to stabilize it and hasten the reaction) called BrettPhos, which they had previously developed for other purposes.

Coming up with a useful reaction required much testing of different combinations of palladium, ligand, CF3 source, temperature and other factors. "Everything had to match up," says Senecal.

During the reaction, a CF3 group is transferred from a silicon carrier to the palladium, displacing a chlorine atom. Subsequently, the aryl-CF3 unit is released and the catalytic cycle begins anew. The researchers tried the synthesis with a variety of aryl compounds and achieved yields ranging from 70 to 94 percent of the trifluoromethylated products.

In its current state, the process is too expensive for manufacturing use. For drug discovery, however, it may lower overall costs because it streamlines the entire synthesis process. "For discovery chemistry, the price of the metal is much less important," says Kinzel.

All of the reaction components are commercially available, so pharmaceutical and other companies will immediately be able to use this method.

"This versatile new methodology is directly applicable to drug development," says John Schwab, a program director at the National Institute of Health's National Institute of General Medical Sciences, which partially funded the research. "This is a terrific example of how U.S. healthcare consumers are benefiting from their investment in NIH and in basic, biomedical research."

Source: "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides." Eun Jin Cho, Todd D. Senecal, Tom Kinzel, Yong Zhang, Donald A. Watson, Stephen L. Buchwald. Science. 25 June, 2010.

Written by Anne Trafton, MIT News Office

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: CF3 CHEMISTRY Science TV catalytic converter drug discovery methyl group

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>