Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT chemists find an easier way to synthesize new drug candidates

25.06.2010
New method could have a big impact on pharmaceutical business

Some drugs may be more effective the longer they last inside the body. To prevent such drugs from being broken down too rapidly, pharmaceutical manufacturers often attach a fluorine-containing structure called a trifluoromethyl group. However, the processes now used require harsh reaction conditions or only work in a small number of cases, limiting their usefulness for synthesizing new drug candidates for testing.

Now, MIT chemists have designed a new way to attach a trifluoromethyl group to certain compounds, which they believe could allow pharmaceutical companies to create and test new drugs much faster and potentially reduce the cost of drug discovery. The new synthesis, reported in the June 25 issue of Science, could have an immediate impact.

MIT Chemistry Professor Stephen Buchwald, who led the research team, says achieving the synthesis has been a long-standing challenge for chemists. "Some people said it couldn't be done, so that's a good reason to try," says Buchwald, the Camille Dreyfus Professor of Chemistry at MIT.

Eun Jin Cho, a postdoctoral associate in Buchwald's lab, is the lead author of the paper. Other authors are graduate student Todd Senecal, postdoctoral associates Tom Kinzel and Yong Zhang, and former postdoctoral associate Donald Watson, now an assistant professor of chemistry at the University of Delaware.

The trifluoromethyl group (abbreviated CF3) is a component of several commonly used drugs, including the antidepressant Prozac, arthritis medication Celebrex and Januvia, used to treat diabetes symptoms.

When foreign compounds such as drugs enter the body, they get sent to the liver, where they are broken down and shipped on to the kidneys for excretion. However, CF3 groups are hard for the body to break down because they contain three fluorine atoms. "Fluorine is not really a component of things we eat, so the body does not know what to do with it," says Kinzel.

CF3 groups are also a common component of agricultural chemicals such as pesticides. To add a CF3 group to organic (carbon-containing) molecules, chemists often use hydrogen fluoride under conditions that might produce undesired reactions among the many structural components found in complex molecules like pharmaceuticals or agrochemicals.

With the new reaction, the CF3 group can be added at a much later stage of the overall drug synthesis. The reaction can also be used with a broad range of starting materials, giving drug developers much more flexibility in designing new compounds.

Chemists have been trying to find a widely applicable catalytic method to attach CF3 to aryl compounds (compounds containing one or more six-carbon rings) for a couple of decades. Some have achieved different parts of the reaction, but none successfully put all the pieces together to arrive at a method that is applicable for a wide range of different aryl compounds. The major challenge has been finding a suitable catalyst (a molecule that speeds up a reaction) to transfer the CF3 entity from another source to the carbon ring.

CF3– (trifluoromethyl negative ion) tends to be unstable when detached from other molecules, so the catalyst must act quickly to transfer the CF3 group before it decomposes. The MIT team chose to use a catalyst built from palladium, a silvery-white metal commonly used in catalytic converters. The MIT team is not the first to try palladium catalysis for this reaction, but the key to their success was the use of a ligand (a molecule that binds to the metal to stabilize it and hasten the reaction) called BrettPhos, which they had previously developed for other purposes.

Coming up with a useful reaction required much testing of different combinations of palladium, ligand, CF3 source, temperature and other factors. "Everything had to match up," says Senecal.

During the reaction, a CF3 group is transferred from a silicon carrier to the palladium, displacing a chlorine atom. Subsequently, the aryl-CF3 unit is released and the catalytic cycle begins anew. The researchers tried the synthesis with a variety of aryl compounds and achieved yields ranging from 70 to 94 percent of the trifluoromethylated products.

In its current state, the process is too expensive for manufacturing use. For drug discovery, however, it may lower overall costs because it streamlines the entire synthesis process. "For discovery chemistry, the price of the metal is much less important," says Kinzel.

All of the reaction components are commercially available, so pharmaceutical and other companies will immediately be able to use this method.

"This versatile new methodology is directly applicable to drug development," says John Schwab, a program director at the National Institute of Health's National Institute of General Medical Sciences, which partially funded the research. "This is a terrific example of how U.S. healthcare consumers are benefiting from their investment in NIH and in basic, biomedical research."

Source: "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides." Eun Jin Cho, Todd D. Senecal, Tom Kinzel, Yong Zhang, Donald A. Watson, Stephen L. Buchwald. Science. 25 June, 2010.

Written by Anne Trafton, MIT News Office

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: CF3 CHEMISTRY Science TV catalytic converter drug discovery methyl group

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>