Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri Botanical Garden scientists examine toxicity of medicinal plants in Peru

15.12.2011
One Quarter of Water Extracts and Three Quarters of Alcoholic
Extracts From 341 Medicinal Plants Had Toxic Side Effects

Many developing countries rely on traditional medicine as an accessible and affordable treatment option for human maladies. However, until now, scientific data has not existed to evaluate the potential toxicity of medicinal plant species in Peru.

Scientists from the William L. Brown Center of the Missouri Botanical Garden in St. Louis led a study using brine shrimp to determine the toxicity of 341 Northern Peruvian plant species commonly ingested in traditional medicine. Their findings indicated over 24 percent of water extracts made from these plant species and 76 percent of alcoholic extracts from the plants contained elevated toxicity levels.

The results reinforce the need for traditional preparation methods to take different toxicity levels into account when choosing the appropriate solvent for the preparation of a medicinal remedy. The study was funded by grants from the National Institutes of Health MHIRT program through San Diego State University and was published in the Journal of Ethnopharmacology.

Peru is a country rich in biodiversity with a millennia-old tradition of curers using the native flora in medicinal remedies. Traditional medicine is a common practice in the Andean region, where the same plants used years ago are still relied upon today for their healing powers.

“Traditional medicine is an important way to address health issues, but through this study wanted to show that remedies could contain potentially harmful ingredients and need to be prepared with correctly collected, identified and prepared ingredients,” said Dr. Rainer Bussmann, William L. Brown Curator for Economic Botany and director of the William L. Brown Center at the Missouri Botanical Garden. “The William L. Brown Center focuses on this area because plant material used in traditional medicine is marketed in the U.S. more and more, whether direct or via the internet.”

The plants used in this study were collected in the field, at public markets and at the homes of traditional healers, or curanderos, all in Northern Peru. Botanists gathered material from each of 341 traditional medicinal plant species, dried the material and processed it in an industrial grinder. Two samples of plant material were taken from each species. One sample was submerged in 96 percent ethanol for seven days, and the other in boiling distilled water for one day—both traditional preparations of plant extracts. The solvents were evaporated to complete dryness and a concentration of each extract was removed for testing. Plant extracts were then diluted to various concentrations in vials.

Brine shrimp (Artemia sp.), small invertebrates that dwell in sea water and other saline ecosystems, are frequently used in laboratory studies to evaluate toxicity values as a measure of median lethal concentration values, or LC50, as they offer a simple, quick and cost-effective way to test plant extracts. Brine shrimp larvae were submerged in 501 total vials of aqueous and ethanolic plant extract solutions, and scientists recorded their rates of mortality after 24 hours.

Testing of the aqueous extracts showed high toxicity values for 55 of the total plant species, with 18 species having median toxicity values and another 18 species having low toxicity. The alcoholic extracts proved exponentially more toxic, with 220 plant species showing high toxicity values, 43 having median toxicity and 23 showing low toxicity.

“Preparation methods by curanderos are taking this into account, and most traditional remedies such as medicinal teas are made with simple water extracts instead of alcoholic ones, thus avoiding potential toxic effects in patients,” said Bussmann. “However, traditional knowledge about medicinal plant use is rapidly eroding and many of these plant species are threatened with extinction. Roughly four out of five people in developing countries rely on plants for their primary health care, so studies such as this are vital to ensure that the knowledge base of traditional healers is reinforced and expanded for the benefit of future generations.”

“Importantly, during this study, we also discovered that while most cases of extracts made from different collections of one plant species showed the similar toxicity levels, other plant species collected at different times varied from non-toxic to highly toxic,” added Bussmann. “Future studies should investigate whether harvest time, collection locality or use of specific plant parts might contribute to a reduction of toxicity in these frequently-used plants.”

Humans consume thousands of species of plants to meet their basic nutritional needs but only a handful of these plants have received significant study through international agricultural centers. Many remain poorly understood and largely undeveloped, and their wild relatives are threatened with extinction and in need of conservation attention. Stewardship of these valuable plant resources will require rigorous science combined with an approach that respects and values traditional knowledge systems; supports intellectual property mechanisms that equitably compensate all parties; and includes local participatory methods to ensure culturally-sensitive solutions.

The Missouri Botanical Garden’s William L. Brown Center (WLBC) is uniquely positioned to respond to these issues and play a leading role in addressing these problems. The Center is located in one of the largest herbaria in the world, making a wealth of plant data available from collections. Access to advanced scientific methodologies allows more rapid characterization of useful species, chemicals or genes that lead to new nutritional and pharmaceutical products. The Center has access to improved information technologies that facilitate the rapid communication of data and allow repatriation of data to the countries where it is needed to make intelligent decisions about the use of natural resources. Appropriate partnerships between the Center and collaborators in developing countries enable capacity building to ensure that countries have the infrastructure to make sound development and conservation plans. Partnerships between the Center and both national institutions and local communities permit the implementation of integrated conservation and sustainable development programs.

With the William L. Brown Center, the Missouri Botanical Garden is a global leader in discovering, explaining and disseminating information about the diverse and dynamic relationships between people and plants throughout the world. Today, 152 years after opening, the Missouri Botanical Garden is a National Historic Landmark and a center for science, conservation, education and horticultural display. With scientists working in 35 countries on six continents around the globe, the Missouri Botanical Garden has one of the three largest plant science programs in the world and a mission “to discover and share knowledge about plants and their environment in order to preserve and enrich life.”

For general information about the Missouri Botanical Garden, visit www.mobot.org. For more on the William L. Brown Center, visit www.wlbcenter.org.

The Missouri Botanical Garden’s mission is “to discover and share knowledge about plants and their environment in order to preserve and enrich life.” Today, 152 years after opening, the Missouri Botanical Garden is a National Historic Landmark and a center for science, conservation, education and horticultural display.

Karen Hill | EurekAlert!
Further information:
http://www.mobot.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>