Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing Puma reveals cancer conundrum

02.08.2010
Walter and Eliza Hall Institute researchers in Melbourne, Australia, have made a discovery that has upended scientists' understanding of programmed cell death and its role in tumour formation.

Programmed cell death, also called apoptosis, is an important process in human biology as it removes unwanted and damaged cells from our bodies. This process protects us against cancer development and autoimmune disease.

The research team's discovery, led by Professor Andreas Strasser from the institute's Molecular Genetics of Cancer Division, has implications for the understanding of how cancers develop and will inform the ongoing development of a new class of anti-cancer drugs called BH3 mimetics.

"Until now everybody believed that a failure of damaged cells to undergo suicide allowed mutated cells to proliferate, which contributes to tumour development," Professor Strasser said. "That's certainly still true but we discovered that, in certain settings, the opposite holds: the body's natural cell-suicide program can fuel tumour development."

The research team's experiments revealed that repeated cycles of cellular depletion and tissue regeneration, by activating stem cells, could promote tumour development.

In situations where the DNA in many cells is damaged, such as when the body is repeatedly exposed to low doses of radiation, there are repeated cycles of cell death in the body's tissues. "Attempts by the body's stem cells to repopulate the depleted tissue can then actually drive the tumour development," Professor Strasser said. "That's because the radiation, while killing many cells within a tissue, will create mutations in some of the surviving stem cells. When such abnormal (mutated) stem cells repopulate the tissue, they will divide many times and this can promote the development of tumours."

The research, done in collaboration with Dr Ewa Michalak, Dr Cassandra Vandenberg, Mr Alex Delbridge, Dr Li Wu, Dr Clare Scott and Professor Jerry Adams, is published in today's issue of the international journal Genes and Development.

Crucial to the team's research was an understanding of what happens to mice exposed to radiation when a gene called Puma is missing. "If normal mice (which have the Puma gene) are given a low dose of radiation it destroys around 80 per cent of the white blood cells," Professor Strasser said. "That does not kill the mouse but it does mean the stem cells in the bone marrow have to work extra hard to replenish the blood system. This can lead to the formation of tumours of white blood cells, called leukaemias, if the stem cells doing the repopulating have cancer-causing mutations.

"The surprise was that mice that don't carry the Puma gene are protected from this type of tumour development. Puma is essential for the death of cells that have damaged DNA. If mice don't have the Puma gene when they receive low doses of radiation the white blood cells are not destroyed, so you don't force mutated stem cells to become activated (and divide) to replenish the blood system."

Professor Strasser said the research suggested that the risk of cancer was increased in people who experienced cycles of tissue destruction followed by tissue re-population by stem cells. "Such cycles may account for the liver cancers frequently associated with viral (hepatitis C) infection or alcohol-related liver damage." The research also helps explain the so-called secondary cancers that sometimes arise in patients who were cured of their primary cancer by chemotherapeutic drugs that cause DNA damage."

The findings will also inform the ongoing development of a new class of anti-cancer drugs called BH3 mimetics. These drugs are designed to kill cancer cells. "Chronic exposure to such drugs could lead to the death of large numbers of normal cells that would then need to be replaced," Professor Strasser said. "In certain circumstances this could promote the development of secondary cancers, particularly if patients are receiving treatments such as chemotherapy or gamma-radiation that can lead to cancer-causing mutations in stem cells."

The research was supported by the National Health and Medical Research Council, the Leukemia and Lymphoma Society, the National Institutes of Health (US), the Juvenile Diabetes Research Foundation, Cancer Council Victoria and the Victorian Government.

Penny Fannin | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>