Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing Puma reveals cancer conundrum

02.08.2010
Walter and Eliza Hall Institute researchers in Melbourne, Australia, have made a discovery that has upended scientists' understanding of programmed cell death and its role in tumour formation.

Programmed cell death, also called apoptosis, is an important process in human biology as it removes unwanted and damaged cells from our bodies. This process protects us against cancer development and autoimmune disease.

The research team's discovery, led by Professor Andreas Strasser from the institute's Molecular Genetics of Cancer Division, has implications for the understanding of how cancers develop and will inform the ongoing development of a new class of anti-cancer drugs called BH3 mimetics.

"Until now everybody believed that a failure of damaged cells to undergo suicide allowed mutated cells to proliferate, which contributes to tumour development," Professor Strasser said. "That's certainly still true but we discovered that, in certain settings, the opposite holds: the body's natural cell-suicide program can fuel tumour development."

The research team's experiments revealed that repeated cycles of cellular depletion and tissue regeneration, by activating stem cells, could promote tumour development.

In situations where the DNA in many cells is damaged, such as when the body is repeatedly exposed to low doses of radiation, there are repeated cycles of cell death in the body's tissues. "Attempts by the body's stem cells to repopulate the depleted tissue can then actually drive the tumour development," Professor Strasser said. "That's because the radiation, while killing many cells within a tissue, will create mutations in some of the surviving stem cells. When such abnormal (mutated) stem cells repopulate the tissue, they will divide many times and this can promote the development of tumours."

The research, done in collaboration with Dr Ewa Michalak, Dr Cassandra Vandenberg, Mr Alex Delbridge, Dr Li Wu, Dr Clare Scott and Professor Jerry Adams, is published in today's issue of the international journal Genes and Development.

Crucial to the team's research was an understanding of what happens to mice exposed to radiation when a gene called Puma is missing. "If normal mice (which have the Puma gene) are given a low dose of radiation it destroys around 80 per cent of the white blood cells," Professor Strasser said. "That does not kill the mouse but it does mean the stem cells in the bone marrow have to work extra hard to replenish the blood system. This can lead to the formation of tumours of white blood cells, called leukaemias, if the stem cells doing the repopulating have cancer-causing mutations.

"The surprise was that mice that don't carry the Puma gene are protected from this type of tumour development. Puma is essential for the death of cells that have damaged DNA. If mice don't have the Puma gene when they receive low doses of radiation the white blood cells are not destroyed, so you don't force mutated stem cells to become activated (and divide) to replenish the blood system."

Professor Strasser said the research suggested that the risk of cancer was increased in people who experienced cycles of tissue destruction followed by tissue re-population by stem cells. "Such cycles may account for the liver cancers frequently associated with viral (hepatitis C) infection or alcohol-related liver damage." The research also helps explain the so-called secondary cancers that sometimes arise in patients who were cured of their primary cancer by chemotherapeutic drugs that cause DNA damage."

The findings will also inform the ongoing development of a new class of anti-cancer drugs called BH3 mimetics. These drugs are designed to kill cancer cells. "Chronic exposure to such drugs could lead to the death of large numbers of normal cells that would then need to be replaced," Professor Strasser said. "In certain circumstances this could promote the development of secondary cancers, particularly if patients are receiving treatments such as chemotherapy or gamma-radiation that can lead to cancer-causing mutations in stem cells."

The research was supported by the National Health and Medical Research Council, the Leukemia and Lymphoma Society, the National Institutes of Health (US), the Juvenile Diabetes Research Foundation, Cancer Council Victoria and the Victorian Government.

Penny Fannin | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>