Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing piece of plant clock found

13.03.2009
Biologists at the University of California, San Diego have identified a key protein that links the morning and evening components of the daily biological clock of plants.

Their discovery, detailed in the March 13 issue of Science, solves a longstanding puzzle about the underlying biochemical mechanisms that control plant clocks and could provide a new way to increase the growth and yield of agricultural crops.

The finding is the first outcome of a larger effort to assemble a complete library of all proteins called transcription factors, which regulate genes, in Arabidopsis, a plant often used as a genetic model.

Scientists previously had identified two primary feedback loops in the plant daily clock – one that detects the onset of light in the morning and another that tracks when light fades in the evening.

"The best way to construct a robust clock would be to connect the loops so that they both communicate that information to each other," said Steve Kay, dean of the Division of Biological Sciences at UC San Diego whose research team made the discovery. "Now a protein we call CHE has provided that link."

CHE, first predicted nearly a decade ago, has proved difficult to find. Multiple backup systems for many important functions in plants, including timekeeping, frustrate efforts to identify the function of an individual molecule or gene.

"In plants there are a lot of redundancies – proteins that do similar things," said Jose Pruneda-Paz, a postdoctoral fellow at UC San Diego and the first author of the study. "In the clock, on top of the redundancies, you have feedback loops that are interconnected. So it's difficult to perturb the system."

Disrupting a protein will fail to reveal its function if the system can compensate for its loss, so the team took a different approach. They sorted through proteins with the ability to bind to DNA, and therefore to regulate genes, and selected candidates mostly likely to be part of a clock: the ones that cycle between abundant and scarce.

Of those cyclical proteins, only CHE stuck specifically to the part of plant DNA that controls a critical component of the morning loop. Further experiments demonstrated that CHE also binds to an evening loop protein providing the missing link.

Pruneda-Paz and his co-authors "solve a major puzzle in our understanding of the plant clock," wrote C. Robertson McClung, professor of biology at Dartmouth College, in a commentary on the article that will appear in the same issue of Science.

Evidence increasingly points to the clock as a critical component of functions growth and the timing of flowering. A recent paper published in Nature by a group at the University of Texas, Austin reports that an altered clock contributes to hybrid vigor, suggesting that targeting clock genes may be a way to improve the growth of crops. "It's going to be a way to come up with rational design for increasing yield in the field," Kay said.

Kay expects the growing catalog of transcription factors to be completed by the end of the year with more than 2,000 entries, he said. "This is going to be a significant resource for the plant science community developed here at UC San Diego."

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>