Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing piece of plant clock found

13.03.2009
Biologists at the University of California, San Diego have identified a key protein that links the morning and evening components of the daily biological clock of plants.

Their discovery, detailed in the March 13 issue of Science, solves a longstanding puzzle about the underlying biochemical mechanisms that control plant clocks and could provide a new way to increase the growth and yield of agricultural crops.

The finding is the first outcome of a larger effort to assemble a complete library of all proteins called transcription factors, which regulate genes, in Arabidopsis, a plant often used as a genetic model.

Scientists previously had identified two primary feedback loops in the plant daily clock – one that detects the onset of light in the morning and another that tracks when light fades in the evening.

"The best way to construct a robust clock would be to connect the loops so that they both communicate that information to each other," said Steve Kay, dean of the Division of Biological Sciences at UC San Diego whose research team made the discovery. "Now a protein we call CHE has provided that link."

CHE, first predicted nearly a decade ago, has proved difficult to find. Multiple backup systems for many important functions in plants, including timekeeping, frustrate efforts to identify the function of an individual molecule or gene.

"In plants there are a lot of redundancies – proteins that do similar things," said Jose Pruneda-Paz, a postdoctoral fellow at UC San Diego and the first author of the study. "In the clock, on top of the redundancies, you have feedback loops that are interconnected. So it's difficult to perturb the system."

Disrupting a protein will fail to reveal its function if the system can compensate for its loss, so the team took a different approach. They sorted through proteins with the ability to bind to DNA, and therefore to regulate genes, and selected candidates mostly likely to be part of a clock: the ones that cycle between abundant and scarce.

Of those cyclical proteins, only CHE stuck specifically to the part of plant DNA that controls a critical component of the morning loop. Further experiments demonstrated that CHE also binds to an evening loop protein providing the missing link.

Pruneda-Paz and his co-authors "solve a major puzzle in our understanding of the plant clock," wrote C. Robertson McClung, professor of biology at Dartmouth College, in a commentary on the article that will appear in the same issue of Science.

Evidence increasingly points to the clock as a critical component of functions growth and the timing of flowering. A recent paper published in Nature by a group at the University of Texas, Austin reports that an altered clock contributes to hybrid vigor, suggesting that targeting clock genes may be a way to improve the growth of crops. "It's going to be a way to come up with rational design for increasing yield in the field," Kay said.

Kay expects the growing catalog of transcription factors to be completed by the end of the year with more than 2,000 entries, he said. "This is going to be a significant resource for the plant science community developed here at UC San Diego."

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>