Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Missing piece gets a work over

Researchers working in Japan have developed a new theory that may explain the activity of two unusual, but vitally important, enzymes that were discovered over 40 years ago.

New pathways for the biological activity of two little-understood enzymes emerge from a theoretical investigation

The enzymes, indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), known as dioxygenases, are responsible for the cleavage of the essential amino acid, L-tryptophan. Both enzymes contain heme—a metal-containing organic ring structure—to which molecular oxygen is bound before being transferred to L-tryptophan. This important oxidation reaction releases energy into the body in all cells in mammals, but its mechanism is little understood.

Now, Hiroshi Sugimoto and colleagues at the RIKEN SPring-8 Center, Harima, in collaboration with Keiji Morokuma, Lung Wa Chung and colleagues at Kyoto University, have studied the structures of these enzymes and modeled some potential reaction pathways to better understand how they work1.

Recently, crystal structures of IDO (Fig. 1) 2 and TDO with tryptophan or similar compounds were obtained. Surprisingly, these structures showed different active sites for these enzymes compared to other heme systems. Consequently, the researchers concluded that different mechanistic pathways must also be operating for the dioxygenase reaction.

The researchers used a detailed modeling method, called Density Functional Theory, to calculate and evaluate the energy of the starting compounds, products, possible reaction intermediates and transition states. They then used comparisons to provide insight into which reaction pathways are the most energetically favorable and, therefore, which mechanism is most likely to take place in the body.

They found that one proposed mechanism involved a highly distorted transition state, which would lead to a very high energy barrier, making this route doubtful. Instead, they suggest that a new and energetically favorable mechanistic pathway explains the unusual dioxygen activation and oxidation reactions for the enzymes. This proposed mechanism is sharply distinct from other mechanisms for heme-containing oxygenases.

The enzyme-bound oxygen was found to react directly with the electron-rich indole carbon on the tryptophan via either a 2-electron (electrophilic) or 1-electron (radical) transfer pathway. Either of these reactions would lead to the formation of a low-energy intermediate making it a much more realistic possibility. Sugimoto and colleagues are now investigating exactly how oxygen binds to the heme and evaluating the contribution of the enzyme to the mechanism.

“[The research] might also be informative for rational drug design because IDO is emerging as an important new therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression,” says Sugimoto.


1. Chung, L.W., Li, X., Sugimoto, H., Shiro, Y. & Morokuma, K. Density Functional Theory Study on a Missing Piece in Understanding of Heme Chemistry: The Reaction Mechanism for Indoleamine 2,3-Dioxygenase and Tryptophan. Journal of the American Chemical Society 130, 12299–12309 (2008).

2. Sugimoto, H., Oda, S., Otsuki, T., Hino, T., Yoshida, T. & Shiro, Y. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proceedings of the National Academy of Sciences USA 103, 2611–2616 (2006).

The corresponding author for this highlight is based at the RIKEN Biometal Science Laboratory

Saeko Okada | ResearchSEA
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>