Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing piece gets a work over

19.01.2009
Researchers working in Japan have developed a new theory that may explain the activity of two unusual, but vitally important, enzymes that were discovered over 40 years ago.

New pathways for the biological activity of two little-understood enzymes emerge from a theoretical investigation

The enzymes, indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), known as dioxygenases, are responsible for the cleavage of the essential amino acid, L-tryptophan. Both enzymes contain heme—a metal-containing organic ring structure—to which molecular oxygen is bound before being transferred to L-tryptophan. This important oxidation reaction releases energy into the body in all cells in mammals, but its mechanism is little understood.

Now, Hiroshi Sugimoto and colleagues at the RIKEN SPring-8 Center, Harima, in collaboration with Keiji Morokuma, Lung Wa Chung and colleagues at Kyoto University, have studied the structures of these enzymes and modeled some potential reaction pathways to better understand how they work1.

Recently, crystal structures of IDO (Fig. 1) 2 and TDO with tryptophan or similar compounds were obtained. Surprisingly, these structures showed different active sites for these enzymes compared to other heme systems. Consequently, the researchers concluded that different mechanistic pathways must also be operating for the dioxygenase reaction.

The researchers used a detailed modeling method, called Density Functional Theory, to calculate and evaluate the energy of the starting compounds, products, possible reaction intermediates and transition states. They then used comparisons to provide insight into which reaction pathways are the most energetically favorable and, therefore, which mechanism is most likely to take place in the body.

They found that one proposed mechanism involved a highly distorted transition state, which would lead to a very high energy barrier, making this route doubtful. Instead, they suggest that a new and energetically favorable mechanistic pathway explains the unusual dioxygen activation and oxidation reactions for the enzymes. This proposed mechanism is sharply distinct from other mechanisms for heme-containing oxygenases.

The enzyme-bound oxygen was found to react directly with the electron-rich indole carbon on the tryptophan via either a 2-electron (electrophilic) or 1-electron (radical) transfer pathway. Either of these reactions would lead to the formation of a low-energy intermediate making it a much more realistic possibility. Sugimoto and colleagues are now investigating exactly how oxygen binds to the heme and evaluating the contribution of the enzyme to the mechanism.

“[The research] might also be informative for rational drug design because IDO is emerging as an important new therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression,” says Sugimoto.

Reference

1. Chung, L.W., Li, X., Sugimoto, H., Shiro, Y. & Morokuma, K. Density Functional Theory Study on a Missing Piece in Understanding of Heme Chemistry: The Reaction Mechanism for Indoleamine 2,3-Dioxygenase and Tryptophan. Journal of the American Chemical Society 130, 12299–12309 (2008).

2. Sugimoto, H., Oda, S., Otsuki, T., Hino, T., Yoshida, T. & Shiro, Y. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proceedings of the National Academy of Sciences USA 103, 2611–2616 (2006).

The corresponding author for this highlight is based at the RIKEN Biometal Science Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/627/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>