Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mirror, mirror: Scientists find cause of involuntary movements

30.04.2010
Discovery of mutation in Canadian and Iranian families published in journal Science

Researchers have identified the genetic cause of mirror movements, where affected people are unable to move one side of the body without moving the other. For example, when trying to open and close their right hand, their left hand will unintentionally copy the movement. While mirror movements can be observed in fingers, hands, forearms, toes and feet of young children, persistence beyond the age of 10 is unusual.

The gene mutation found to cause mirror movements is called DCC (Deleted in Colorectal Carcinoma). This important discovery provides new understanding on how mirror movements happen and improve scientific knowledge concerning how the brain functions. Published in the latest edition of Science, the discovery is the collaboration of scientists from the Université de Montréal, Sainte-Justine University Hospital Research Center, Centre Hospitalier de l'Université de Montréal, Institut de Recherches Cliniques de Montreal, Montreal Heart Institute and Jundishapour University of Medical Sciences.

"We found that all people affected with mirror movements in one large family have the same DCC mutation," says senior author Guy Rouleau, a Université de Montréal professor, director of the Sainte-Justine University Hospital Research Center and a scientist at the CHUM Research Centre.

"Our study suggests that individuals with mirror movements have a reduction in the DCC gene product, which normally tells the brain cell processes to cross from one side of the brain to the other. Simply put, DCC mutations have an impact on how the brain communicates with limbs."

Discovery of the DCC mutation is significant, says Dr. Rouleau: "Our study provides important clues as to how the human brain is made. One of the mysteries in neurology is how and why the nervous system crosses – now we have helped reveal the 'how.'"

"This work is of broad interest because, despite the large number of studies on DCC in models such as fruit flies, worms and mice, this is the first study which indicates a role for DCC in the formation of brain cell connections in humans," says Dr. Frédéric Charron, study co-author and research unit director at the Institut de Recherches Cliniques de Montréal.

Sample groups from Canada and Iran

As part of the study, the research team analyzed the genes of four-generations of a French Canadian family affected by mirror movements. Another sample group included an Iranian family affected by the same condition. The genes of both families were compared to those of 538 people unaffected by mirror movements.

"Results of general and neurological examinations, as well as magnetic resonance imaging of the brain, were otherwise normal in people affected with mirror movements," explains first author Dr. Myriam Srour, a pediatric neurologist and a doctoral student at the Université de Montréal Faculty of Medicine. "Except that people affected by mirror movements had a DCC mutation, whereas people unaffected by the condition did not."

Among study participants with mirror movements, the condition appeared during infancy or childhood and remained unchanged over time. Approximately half of participants with mirror movements were able to at least partially suppress their condition and function normally.

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.sciencemag.org
http://www.umontreal.ca/english

More articles from Life Sciences:

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>