Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mirror, mirror: Scientists find cause of involuntary movements

30.04.2010
Discovery of mutation in Canadian and Iranian families published in journal Science

Researchers have identified the genetic cause of mirror movements, where affected people are unable to move one side of the body without moving the other. For example, when trying to open and close their right hand, their left hand will unintentionally copy the movement. While mirror movements can be observed in fingers, hands, forearms, toes and feet of young children, persistence beyond the age of 10 is unusual.

The gene mutation found to cause mirror movements is called DCC (Deleted in Colorectal Carcinoma). This important discovery provides new understanding on how mirror movements happen and improve scientific knowledge concerning how the brain functions. Published in the latest edition of Science, the discovery is the collaboration of scientists from the Université de Montréal, Sainte-Justine University Hospital Research Center, Centre Hospitalier de l'Université de Montréal, Institut de Recherches Cliniques de Montreal, Montreal Heart Institute and Jundishapour University of Medical Sciences.

"We found that all people affected with mirror movements in one large family have the same DCC mutation," says senior author Guy Rouleau, a Université de Montréal professor, director of the Sainte-Justine University Hospital Research Center and a scientist at the CHUM Research Centre.

"Our study suggests that individuals with mirror movements have a reduction in the DCC gene product, which normally tells the brain cell processes to cross from one side of the brain to the other. Simply put, DCC mutations have an impact on how the brain communicates with limbs."

Discovery of the DCC mutation is significant, says Dr. Rouleau: "Our study provides important clues as to how the human brain is made. One of the mysteries in neurology is how and why the nervous system crosses – now we have helped reveal the 'how.'"

"This work is of broad interest because, despite the large number of studies on DCC in models such as fruit flies, worms and mice, this is the first study which indicates a role for DCC in the formation of brain cell connections in humans," says Dr. Frédéric Charron, study co-author and research unit director at the Institut de Recherches Cliniques de Montréal.

Sample groups from Canada and Iran

As part of the study, the research team analyzed the genes of four-generations of a French Canadian family affected by mirror movements. Another sample group included an Iranian family affected by the same condition. The genes of both families were compared to those of 538 people unaffected by mirror movements.

"Results of general and neurological examinations, as well as magnetic resonance imaging of the brain, were otherwise normal in people affected with mirror movements," explains first author Dr. Myriam Srour, a pediatric neurologist and a doctoral student at the Université de Montréal Faculty of Medicine. "Except that people affected by mirror movements had a DCC mutation, whereas people unaffected by the condition did not."

Among study participants with mirror movements, the condition appeared during infancy or childhood and remained unchanged over time. Approximately half of participants with mirror movements were able to at least partially suppress their condition and function normally.

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.sciencemag.org
http://www.umontreal.ca/english

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>