Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mirror, mirror: Scientists find cause of involuntary movements

Discovery of mutation in Canadian and Iranian families published in journal Science

Researchers have identified the genetic cause of mirror movements, where affected people are unable to move one side of the body without moving the other. For example, when trying to open and close their right hand, their left hand will unintentionally copy the movement. While mirror movements can be observed in fingers, hands, forearms, toes and feet of young children, persistence beyond the age of 10 is unusual.

The gene mutation found to cause mirror movements is called DCC (Deleted in Colorectal Carcinoma). This important discovery provides new understanding on how mirror movements happen and improve scientific knowledge concerning how the brain functions. Published in the latest edition of Science, the discovery is the collaboration of scientists from the Université de Montréal, Sainte-Justine University Hospital Research Center, Centre Hospitalier de l'Université de Montréal, Institut de Recherches Cliniques de Montreal, Montreal Heart Institute and Jundishapour University of Medical Sciences.

"We found that all people affected with mirror movements in one large family have the same DCC mutation," says senior author Guy Rouleau, a Université de Montréal professor, director of the Sainte-Justine University Hospital Research Center and a scientist at the CHUM Research Centre.

"Our study suggests that individuals with mirror movements have a reduction in the DCC gene product, which normally tells the brain cell processes to cross from one side of the brain to the other. Simply put, DCC mutations have an impact on how the brain communicates with limbs."

Discovery of the DCC mutation is significant, says Dr. Rouleau: "Our study provides important clues as to how the human brain is made. One of the mysteries in neurology is how and why the nervous system crosses – now we have helped reveal the 'how.'"

"This work is of broad interest because, despite the large number of studies on DCC in models such as fruit flies, worms and mice, this is the first study which indicates a role for DCC in the formation of brain cell connections in humans," says Dr. Frédéric Charron, study co-author and research unit director at the Institut de Recherches Cliniques de Montréal.

Sample groups from Canada and Iran

As part of the study, the research team analyzed the genes of four-generations of a French Canadian family affected by mirror movements. Another sample group included an Iranian family affected by the same condition. The genes of both families were compared to those of 538 people unaffected by mirror movements.

"Results of general and neurological examinations, as well as magnetic resonance imaging of the brain, were otherwise normal in people affected with mirror movements," explains first author Dr. Myriam Srour, a pediatric neurologist and a doctoral student at the Université de Montréal Faculty of Medicine. "Except that people affected by mirror movements had a DCC mutation, whereas people unaffected by the condition did not."

Among study participants with mirror movements, the condition appeared during infancy or childhood and remained unchanged over time. Approximately half of participants with mirror movements were able to at least partially suppress their condition and function normally.

Sylvain-Jacques Desjardins | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>