Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minorities accomplish most - watching micoorganisms at work

04.11.2008
Modern NanoSIMS-Technology allows insights into the metabolism of single cells - and provides some surprising findings.

In an alpine lake, the lion's share of the lakes metabolic activity in the investigated layer was accomplished by a tiny part of the bacterial community. Such minorities have often been neglected in ecosystem studies. However, they appear to be of crucial importance in some ecosystems, the authors point out.

Microorganisms are all over the place - but who does what, and when?

An international group of scientists around Niculina Musat from Max-Planck-Institute for Marine Microbiology in Bremen, Germany, managed to determine simultaneously the metabolism and identity of single bacterial cells. At Lake Cadagno, an alpine lake in Switzerland, the scientists compared the metabolic activity of three species of bacteria. They now publish their surprising results in the "Proceedings of the National Academy of Science" (PNAS): The lion's share of the lakes metabolic activity in the investigated layer was accomplished by a tiny part of the bacterial community. The species constituting only 0.3 percent of all bacterial cells was responsible for more than 40 percent of the ammonium- and 70 percent of the carbon uptake.

Opposite to most inland waters, Lake Cadagno is permanently stratified (meromictic). The transition zone between an upper, oxic and a lower, anoxic layer is the habitat of Chromatium okenii, Lamprocystis purpurea and Chlorobium clathratiforme - all of these microorganisms are living photosynthetically in the absence of oxygen. Chlorobium clathratiforme, being the most abundant species, accounts for up to 80 percent of all cells in the investigated layer. Nevertheless, C. clathratiforme contributes only about 15 percent of the total ammonium and carbon uptake. Lamprocystis purpurea, an abundant, small species, took up less than 2 percent of the investigated nutrients. On the contrary, the comparatively large cells of Chromatium okenii, comprising a tiny part of the bacterial community, contributed the major part to the uptake of ammonium and carbon.

"Most studies on the ecology of microbial communities deal with the abundant organisms. This is also true for genetical analyses of environmental samples. Groups of microorganisms with a frequency of less than one percent, however, are often neglected and regarded as minor or of no importance. However, our results clearly show that exactly those minorities can be essential for the understanding of an ecosystem. Neglecting them can easily lead to erroneous conclusions", underlines co-author Marcel Kuypers.

Comparing cells within one species, Musat and her colleagues found even more surprises: Metabolic rates vary greatly between individual cells of the same species, showing that microbial populations in the environment are heterogeneous, being comprised of physiologically distinct individuals. The scientists suspect genetic reasons for this heterogeneity. Differences between individual cells probably result from minor variability within the genome, springing from mutations during evolution.

The results at hand are available thanks to the so-called NanoSIMS-Technology. The scientists from the Max-Planck-Institute in Bremen operate their NanoSIMS since mid 2008 and have optimized this special mass spectrometer for ecological issues. This allows to analyze the distribution of various labelled carbon and nitrogen compounds within single cells. At the same time, single microbial cells are identified by the scientists applying molecular techniques. "This method will revolutionize ecological investigations", Marcel Kuypers is confident.

Manfred Schlösser
Fanni Aspetsberger
For further information please contact:
Dr. Marcel Kuypers 0421 2028 647
Dr. Niculina Musat 0421 2028 653
or the MPI press officers
Dr. Manfred Schlösser 0421 2028704
Dr. Fanni Aspetsberger 0421 2028 704
Original article:
A single cell view on the ecophysiology of anaerobic phototrophic bacteria
Niculina Musat, Hannah Halm, Bärbel Winterholler, Peter Hoppe, Sandro Peduzzi, Francois Hillion, Francois Horreard, Rudolf Amann, Bo B. Jørgensen, and Marcel M.M. Kuypers.

doi:_10.1073/pnas.0809329105

Participating institutions
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
Max Planck Institute for Chemistry, Joh.-J.-Becher Weg 27, 55128 Mainz, Germany
Cantonal Institute of Microbiology and Alpine Biology Center Foundation Piora, Via Mirasole 22A, CH-6500 Bellinzona, Switzerland

Cameca, Quai des Gresillons 29, 92622 Gennevilliers Cedex, France

Dr. Manfred Schloesser | idw
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>