Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minorities accomplish most - watching micoorganisms at work

04.11.2008
Modern NanoSIMS-Technology allows insights into the metabolism of single cells - and provides some surprising findings.

In an alpine lake, the lion's share of the lakes metabolic activity in the investigated layer was accomplished by a tiny part of the bacterial community. Such minorities have often been neglected in ecosystem studies. However, they appear to be of crucial importance in some ecosystems, the authors point out.

Microorganisms are all over the place - but who does what, and when?

An international group of scientists around Niculina Musat from Max-Planck-Institute for Marine Microbiology in Bremen, Germany, managed to determine simultaneously the metabolism and identity of single bacterial cells. At Lake Cadagno, an alpine lake in Switzerland, the scientists compared the metabolic activity of three species of bacteria. They now publish their surprising results in the "Proceedings of the National Academy of Science" (PNAS): The lion's share of the lakes metabolic activity in the investigated layer was accomplished by a tiny part of the bacterial community. The species constituting only 0.3 percent of all bacterial cells was responsible for more than 40 percent of the ammonium- and 70 percent of the carbon uptake.

Opposite to most inland waters, Lake Cadagno is permanently stratified (meromictic). The transition zone between an upper, oxic and a lower, anoxic layer is the habitat of Chromatium okenii, Lamprocystis purpurea and Chlorobium clathratiforme - all of these microorganisms are living photosynthetically in the absence of oxygen. Chlorobium clathratiforme, being the most abundant species, accounts for up to 80 percent of all cells in the investigated layer. Nevertheless, C. clathratiforme contributes only about 15 percent of the total ammonium and carbon uptake. Lamprocystis purpurea, an abundant, small species, took up less than 2 percent of the investigated nutrients. On the contrary, the comparatively large cells of Chromatium okenii, comprising a tiny part of the bacterial community, contributed the major part to the uptake of ammonium and carbon.

"Most studies on the ecology of microbial communities deal with the abundant organisms. This is also true for genetical analyses of environmental samples. Groups of microorganisms with a frequency of less than one percent, however, are often neglected and regarded as minor or of no importance. However, our results clearly show that exactly those minorities can be essential for the understanding of an ecosystem. Neglecting them can easily lead to erroneous conclusions", underlines co-author Marcel Kuypers.

Comparing cells within one species, Musat and her colleagues found even more surprises: Metabolic rates vary greatly between individual cells of the same species, showing that microbial populations in the environment are heterogeneous, being comprised of physiologically distinct individuals. The scientists suspect genetic reasons for this heterogeneity. Differences between individual cells probably result from minor variability within the genome, springing from mutations during evolution.

The results at hand are available thanks to the so-called NanoSIMS-Technology. The scientists from the Max-Planck-Institute in Bremen operate their NanoSIMS since mid 2008 and have optimized this special mass spectrometer for ecological issues. This allows to analyze the distribution of various labelled carbon and nitrogen compounds within single cells. At the same time, single microbial cells are identified by the scientists applying molecular techniques. "This method will revolutionize ecological investigations", Marcel Kuypers is confident.

Manfred Schlösser
Fanni Aspetsberger
For further information please contact:
Dr. Marcel Kuypers 0421 2028 647
Dr. Niculina Musat 0421 2028 653
or the MPI press officers
Dr. Manfred Schlösser 0421 2028704
Dr. Fanni Aspetsberger 0421 2028 704
Original article:
A single cell view on the ecophysiology of anaerobic phototrophic bacteria
Niculina Musat, Hannah Halm, Bärbel Winterholler, Peter Hoppe, Sandro Peduzzi, Francois Hillion, Francois Horreard, Rudolf Amann, Bo B. Jørgensen, and Marcel M.M. Kuypers.

doi:_10.1073/pnas.0809329105

Participating institutions
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
Max Planck Institute for Chemistry, Joh.-J.-Becher Weg 27, 55128 Mainz, Germany
Cantonal Institute of Microbiology and Alpine Biology Center Foundation Piora, Via Mirasole 22A, CH-6500 Bellinzona, Switzerland

Cameca, Quai des Gresillons 29, 92622 Gennevilliers Cedex, France

Dr. Manfred Schloesser | idw
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>