Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature Arm Lifts Weights

25.07.2013
Artificial muscle contracts and expands with changes in humidity


A small plastic strip can do “weight training” to effortlessly lifts many times its own weight, driven by cyclic changes in the humidity of the surrounding air.

This strong “artificial arm” is based on the interaction between microgels and a layer of polycations that shrinks as it dries, according to a report presented by Canadian researchers in the journal Angewandte Chemie.

Polymer materials that perform work in response to a chemical or physical stimulus are often called “artificial muscles”.

These are very interesting for a number of applications, including controlling the movements of “gentler” robots. All components of such robots need to be soft and flexible so that they don’t damage delicate objects and can move in tight spaces.

The arm developed by researchers working with Michael J. Serpe at the University of Alberta is constructed in the following way: A strip of a plastic film is coated with chromium and gold, followed by a microgel monolayer.

Microgels are cross-linked polymers that swell up with a solvent such as water to form gel particles with diameters of up to a few micrometers. The Canadian researchers used negatively charged microgels made from poly(N-isopropylacrylamide) and acrylic acid. A solution containing polycations is deposited onto the gel. These act as positive counterions.

When this system dries out, the hydrophobic interactions between the hydrocarbon regions of the polymer cations increase considerably, which causes the layer containing the polymer cations to shrink. Because the electrostatic attraction between the polycations and the microgel is very strong and the microgel layer is very firmly attached to the coated sheet of plastic, the ends of the strip bend upwards and the system curls up. When the air humidity is increased, it stretches back out.

The researchers hung one of their strips up in a chamber with controlled humidity conditions. By changing the humidity, they were able to make their artificial arm “grip” the handle of a small package and to “hold on” as it rose up. In another experiment, they hung a chain of paperclips to the end of one extended mini-arm. Cyclic changes in the humidity caused the arm to raise and lower this weight, which was 14 times as heavy as the arm itself, like a miniature weight-lifting exercise.

“Given that a human arm is approximately 6.5 % of the total mass of the human body, this is equivalent to a 75 kg human with a single arm that is capable of lifting 68.3 kg,” Serpe says to illustrate the strength of his miniature arm. Even hanging 52.2 g of weight from a curled-up arm was not enough to stretch it out. If a 75 kg human wanted to achieve a similar feat, he would have to keep his arm bent even with 1280 kg pulling on it.

About the Author
Dr. Michael J. Serpe is an assistant professor in the Department of Chemistry at the University of Alberta. His research is focused on using polymer-based materials for a variety of applications; with a particular focus on developing novel point-of-care diagnostics, water remediation systems, and polymer-based muscles and actuators. He was recently awarded the Petro-Canada Young Innovator Award for his research accomplishments.

Author: Michael J. Serpe, University of Alberta, Edmonton (Canada), http://www.chemistry.ualberta.ca/FacultyandStaff/Faculty/MichaelSerpe.aspx

Title: Polymer-Based Muscle Expansion and Contraction
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201303475
Copy free of charge. We would appreciate a transcript of your article or a reference to it.

The original article is available from our online pressroom at http://pressroom.angewandte.org.

Michael J. Serpe | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Silencing the Speech Gene FOXP2 Causes Breast Cancer Cells to Metastasize
23.10.2014 | Beth Israel Deaconess Medical Center

nachricht Protecting us from our cells: Growth factor boosts natural defence against auto-immune disorders
23.10.2014 | European Molecular Biology Laboratory EMBL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

 
Latest News

NASA's TRMM Satellite Calculates Hurricanes Fay and Gonzalo Rainfall

23.10.2014 | Earth Sciences

New 3D Display Technology Promises Greater Energy Efficiency

23.10.2014 | Power and Electrical Engineering

World population likely to peak by 2070

23.10.2014 | Social Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>