Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini Regulatory Molecules Found In Circulating Blood

10.12.2008
Researchers from the Ohio State University Medical Center have identified for the first time microRNA in the circulating blood of healthy human volunteers. MicroRNA are molecules that help control the types and amounts of proteins made by the cell.

The study appears in a recent issue of the journal Public Library of Science (PLoS One).

The study found the mini-regulatory molecules inside tiny sacs, or microvesicles, were circulating in the bloodstream. Exactly what they are doing there isn’t known yet, but the findings are the first step in determining the role of these molecules in the blood and whether they might one day be used to predict the presence of disease, says principal investigator Dr. Clay B. Marsh, director of the Center for Critical Care at Ohio State’s medical center and division director of pulmonary, allergy, critical care and sleep medicine.

“These microRNAs and microvesicles flowing in the blood may be a system used by our bodies to communicate between distant organ sites,” Marsh says. “Our findings strongly suggest that they are actively packaged and released by cells.”

Altered microRNA levels are associated with a wide variety of diseases, including cancer. The researchers speculate that miRNAs in blood cells also control the production of bone marrow cells, allowing for an inside look at how these genes change in disease states.

“By examining a healthy population, our findings have established a basis for future research to utilize the microRNA expression profile in microvesicles as diagnostic biomarkers for many human diseases,” says Dr. Melissa Piper-Hunter, who is first author of the study.

“This may open up a new avenue to understanding dynamic changes in this particular material that may contribute to health and disease of each individual,” adds Marsh.

Along with Marsh and Piper-Hunter, other Ohio State researchers involved in the study were Noura Ismail, Xiaoli Zhang, Baltazar D. Aguda, Eun Joo Lee, Lianbo Yu, Tao Xiao, Jeffrey Schafer, Thomas D. Schmittgen, Patrick Nana-Sinkam and David Jarjoura. Researchers from the University of Maryland also participated in the study.

Sherri L. Kirk | Ohio State Medical News
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>