Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini Regulatory Molecules Found In Circulating Blood

10.12.2008
Researchers from the Ohio State University Medical Center have identified for the first time microRNA in the circulating blood of healthy human volunteers. MicroRNA are molecules that help control the types and amounts of proteins made by the cell.

The study appears in a recent issue of the journal Public Library of Science (PLoS One).

The study found the mini-regulatory molecules inside tiny sacs, or microvesicles, were circulating in the bloodstream. Exactly what they are doing there isn’t known yet, but the findings are the first step in determining the role of these molecules in the blood and whether they might one day be used to predict the presence of disease, says principal investigator Dr. Clay B. Marsh, director of the Center for Critical Care at Ohio State’s medical center and division director of pulmonary, allergy, critical care and sleep medicine.

“These microRNAs and microvesicles flowing in the blood may be a system used by our bodies to communicate between distant organ sites,” Marsh says. “Our findings strongly suggest that they are actively packaged and released by cells.”

Altered microRNA levels are associated with a wide variety of diseases, including cancer. The researchers speculate that miRNAs in blood cells also control the production of bone marrow cells, allowing for an inside look at how these genes change in disease states.

“By examining a healthy population, our findings have established a basis for future research to utilize the microRNA expression profile in microvesicles as diagnostic biomarkers for many human diseases,” says Dr. Melissa Piper-Hunter, who is first author of the study.

“This may open up a new avenue to understanding dynamic changes in this particular material that may contribute to health and disease of each individual,” adds Marsh.

Along with Marsh and Piper-Hunter, other Ohio State researchers involved in the study were Noura Ismail, Xiaoli Zhang, Baltazar D. Aguda, Eun Joo Lee, Lianbo Yu, Tao Xiao, Jeffrey Schafer, Thomas D. Schmittgen, Patrick Nana-Sinkam and David Jarjoura. Researchers from the University of Maryland also participated in the study.

Sherri L. Kirk | Ohio State Medical News
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>