Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mini-intestine grown in a test tube


The ability to grow three-dimensional precursors of an organ from stem cells in a Petri dish has brought about a revolution in the field of biomedicine. But exactly what can be researched on such an organoid in vitro? A team from the Technical University of Munich (TUM) has now shown for the first time how artificially grown mini-intestines can be used in nutritional and diabetic research.

Research efforts on the intestine have increased in recent years. Owing to its enormous surface area – comparable to that of a one-bedroom apartment – and the huge number of neurons it contains – comparable to that in the brain – the intestine is sometimes referred to as the abdominal brain.

Organoids just a quarter of a millimeter across exhibit functions of the human intestine. (Photo: TUM/ Zietek)

The diagram shows on the right side a mini-intestine grown in a test tube and on the left you can see how it works. (Photo: TUM/ Zietek)

In addition to absorbing nutrients from the foods we eat, it influences our immune status and metabolism. With the help of sensors, specialized cells in the intestinal wall determine which hormones, if any, should be released into the bloodstream. Overall, it acts as a highly sophisticated control center.

How an organoid grows from cells

Among their many functions, intestinal hormones, known as incretins, control blood glucose levels, appetite and fat metabolism. Diabetics and obese individuals have already been successfully treated with drugs based on the mechanisms of action of these hormones. However, still too little is known about the precise mechanism behind incretin release.

Applying a new method that is used mainly in stem-cell research and regenerative medicine, researchers from the Technical University of Munich have now devised a robust intestinal model for molecular research into incretin release in a test tube (in vitro).

To do so, they first isolate small pieces of intestine containing stem cells – in this case from mice. In the next step, a nutrient solution in a test tube stimulates the stem cells to develop into an organ-like structure. In just a few days, a spherical organoid forms that measures just a quarter of a millimeter across and is suitable for use in research.

Mini-intestine functions like normal intestinal tissue

“The special thing about our scientific work on the intestinal organoid is that we can observe its inner workings,” explains Dr. Tamara Zietek of the Department of Nutrition Physiology. “The mini-intestines exhibit all the essential functions of a real intestine,” the TUM scientist adds.

The intestinal organoid can:

actively absorb nutrients and drugs
release hormones after activation by nutrients
transmit signals within the intestinal cells to control these processes.

“Until now, it was not possible to investigate these processes in a single model, because conventional models are unsuitable for all these measurements,” says Zietek, the corresponding author of the article that appeared in Scientific Reports of the Nature Publishing Group. In addition, once mini-intestines have been grown, researchers can work with them for months, because they can be replicated in the laboratory.

“This drastically reduces the number of experimental animals needed,” says the scientist. Interdisciplinary collaboration Zietek developed the method in collaboration with Dr. Eva Rath of the Department of Nutrition and Immunology. Working on an interdisciplinary basis, the two scientists have combined organoid cultivation with molecular nutritional research. They are now demonstrating that the mini-intestine is an ideal model for investigating hormone release and transport mechanisms in the digestive tract.

“This is a huge advance for gastroenterological basic research as well as biomedical sciences and pharmacology,” Zietek believes. The next step will be to work with mini-intestines grown from human intestinal biopsy material. “We’re already in contact with a hospital that can provide the required research material.”In view of the growing number of diabetics and obese individuals, this method can help nutritional researchers develop new forms of treatment.

Tamara Zietek, Eva Rath, Dirk Haller und Hannelore Daniel: Intestinal organoids for assessing nutrient transport, sensing and incretin secretion, Nature Scientific Reports 19.11.2015.
DOI: 10.1038/srep16831

Dr. Tamara Zietek
Technical University of Munich
Department of Nutrition and Immunology
Phone: +49 (0)8161/71 3553

Weitere Informationen:

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>