Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mind the gap -- how new insight into cells could lead to better drugs

19.11.2014

Professor Dan Davis and his team at the Manchester Collaborative Centre for Inflammation Research, working in collaboration with global healthcare company GSK, investigated how different types of immune cells communicate with each other - and how they kill cancerous or infected cells. Their research has been published in Nature Communications.

Professor Davis says: "We studied the immune system and then stumbled across something that may explain why some drugs don't work as well as hoped. We found that immune cells secrete molecules to other cells across a very small gap. This happens when immune cells talk to each other and also, when they kill diseased cells. But crucially, some types of drugs aren't able to penetrate the gap between the cells. So they can't easily reach targets within the gap, to work effectively."

The researchers took molecules of different sizes and colours and used microscopic imaging to see which size of molecule could get into the gap between an immune cell and another cell. They found that only the smaller molecules could penetrate the gap.

They even found that when an immune cell attaches to another cell it clears out all but the smallest molecules between them.

Professor Davis explains the significance of their findings: "Our research demonstrates that any drugs targeting immune cells need to be very small. Antibody proteins, for example, are too big and aren't able to get into the gap between the cells - they're even cleared away when cells meet. To make them more effective they must be smaller - something that GSK is working on."

This research leads to new ideas for making drugs that, for example switch off immune activity in auto-immune diseases like diabetes or increasing immune reactivity to cancer. "A lot of important targets for future medicines are in the very small gap between cells. This research demonstrates why in certain cases we may need drug molecules to be smaller to work effectively," said Simon Chell, from GSK's Biopharm R&D team.

PhD student Adam Cartwright played a key role in the research, spending time at GSK as well as in Davis's lab at the University of Manchester.

He says: "Being able to test out our theory with medicines that GSK has designed was fantastic. The idea that something I had found out can be used to develop treatments to help patients is incredibly exciting."

Professor Davis, author of the popular Penguin paperback The Compatibility Gene, concludes: "The practical application of this basic research comes from bouncing around our ideas with scientists working on drug design. The interaction between academia and pharma is hugely beneficial and we hope it will lead to more effective drug treatments."

Notes for editors

Please note the embargo: 10.00am UK time, Wednesday 19 November 2014

The paper 'The immune synapse clears and excludes molecules above a size threshold' is due to be published in Nature Communications. DOI: NCOMMS6479

High resolution images on request.

The Manchester Collaborative Centre for Inflammation Research The MCCIR was established in October 2012 to address current priorities in inflammatory disease in an open innovation, pre-competitive collaboration between academia and the pharmaceutical industry. GlaxoSmithKline, AstraZeneca and The University of Manchester have each invested £5M to promote "blue skies" research over the next 5 years. Our mission is to bring together clinical, industrial, and academic scientists - and innovate at this interface or in this unique interactive environment.

Register to receive news releases: https://www.manchester.ac.uk/discover/news/register-news-releases/


Follow The University of Manchester Media Relations Team on Twitter: https://twitter.com/UoMNews
For other social media: http://www.manchester.ac.uk/connect/social-media/


Media enquiries to:

Jamie Brown
Media Relations Officer
The University of Manchester
Tel: 0161 2758383
Mob: 07887 561318
Email: jamie.brown@manchester.ac.uk

Jamie Brown | EurekAlert!
Further information:
http://www.manchester.ac.uk

Further reports about: GSK diseased cells drugs immune cell immune cells medicines

More articles from Life Sciences:

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>