Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mind reading: Spatial patterns of brain activity decode what people taste


A team of researchers from the German Institute of Human Nutrition in Potsdam and the Charité University Hospital in Berlin have revealed how taste is encoded in patterns of neural activity in the human brain.

Kathrin Ohla, the lead researcher on the team, said: “The ability to taste is crucial for food choice and the formation of food preferences. Impairments in taste perception or hedonic experience of taste can cause deviant eating behavior, and may lead to mal- or supernutrition. Our research aims to extend the understanding of the neuronal mechanisms of taste perception and valuation. This knowledge is essential for the development of strategies to moderate deviant eating behavior.“

Study participant

Till Budde/DIfE

The study was published in Current Biology (Sébastien M. Crouzet et al., 2015, DOI 10.1016/j.cub.2015.01.057).

Tastants in the mouth activate specific receptors on the tongue corresponding to each of the basic tastes: sweet, salty, sour, bitter, and savory (umami). The signal is then transduced further to the brain. How the peripheral signal is used by the central nervous system to encode taste quality is largely unknown.

In the study, participants discriminated between sweet, salty, sour, and bitter tastants while their brain activity was recorded with electroencephalography (EEG), a method that measures minuscule electrical signals generated by billions of neurons in the human neocortex with millisecond resolution. Different tastes evoked different dynamic patterns of electrical activity.

A machine learning algorithm could be trained to discriminate between these patterns. Thus, given a piece of data, the algorithm could decode from the pattern of brain-wide activity which taste a participant had received in that moment. This form of "mind reading" even made it possible to decode which of four tastants participants thought to have tasted when they were, in fact, incorrect: tastes that participants frequently confused with each other (e.g. sour and salty) were also frequently confused by the algorithm.

Kathrin Ohla said: “We were surprised to find that the onset of this decoding coincided with the earliest taste-evoked responses, within only 175 milliseconds, suggesting that quality is among the first attributes of a taste represented in the central gustatory system.”

Niko Busch adds: “In future studies, we will go a step further and try to decipher from neural activity how pleasurable a taste was in addition to its category. This would be an important step to understanding how individual taste preferences are coded in the brain and of high relevance for clinical applications such as weight loss programs.”

Journal Reference:

Sébastien M. Crouzet, Niko A. Busch and Kathrin Ohla: Taste Quality Decoding Parallels Taste Sensations, Current Biology (2015, DOI 10.1016/j.cub.2015.01.057).

A pdf of the manuscript will be made available to the media via the Eurekalert pages of Cell Press.


Dr. Kathrin Ohla
Junior Research Group
Psychophysiology of Food Perception
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal, Germany
Tel.: +49 33200 88-2543

Dr. Gisela Olias
Senior Press Officer
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal, Germany
Tel.: +49 33200 88-2278/-2335

The German Institute of Human Nutrition (DIfE) is a member of the Leibniz Association. It explores the causes of nutrition-related diseases to develop new strategies for prevention, treatment and dietary recommendations. The research interests of the DIfE are obesity, diabetes, cardiovascular diseases and cancer. More at

The Leibniz Association comprises 89 institutions conducting application-oriented basic research and providing scientific infrastructure. In total, around 17,500 people work for Leibniz institutions – including 8,800 scientists and researchers – with an annual budget of nearly EUR 1.5 billion. The Leibniz Association is characterized by the diversity of research topics and disciplines in which it is engaged. The research museums of the Leibniz Association preserve and explore the natural and cultural heritage. They are also the showcase of research as well as places of learning and fascination for science. Research in the Leibniz institutes is interdisciplinary and involves application-oriented basic research. The institutes’ work is of national significance and is funded jointly by the German federal government and the federal states (German Länder). More at

Weitere Informationen: Junior Research Group Psychophysiology of Food Perception (PSY) A pdf of the manuscript will be made available to the media via the Eurekalert pages of Cell Press.

Dr. Gisela Olias | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>