Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mind reading: Spatial patterns of brain activity decode what people taste

13.03.2015

A team of researchers from the German Institute of Human Nutrition in Potsdam and the Charité University Hospital in Berlin have revealed how taste is encoded in patterns of neural activity in the human brain.

Kathrin Ohla, the lead researcher on the team, said: “The ability to taste is crucial for food choice and the formation of food preferences. Impairments in taste perception or hedonic experience of taste can cause deviant eating behavior, and may lead to mal- or supernutrition. Our research aims to extend the understanding of the neuronal mechanisms of taste perception and valuation. This knowledge is essential for the development of strategies to moderate deviant eating behavior.“


Study participant

Till Budde/DIfE

The study was published in Current Biology (Sébastien M. Crouzet et al., 2015, DOI 10.1016/j.cub.2015.01.057).

Tastants in the mouth activate specific receptors on the tongue corresponding to each of the basic tastes: sweet, salty, sour, bitter, and savory (umami). The signal is then transduced further to the brain. How the peripheral signal is used by the central nervous system to encode taste quality is largely unknown.

In the study, participants discriminated between sweet, salty, sour, and bitter tastants while their brain activity was recorded with electroencephalography (EEG), a method that measures minuscule electrical signals generated by billions of neurons in the human neocortex with millisecond resolution. Different tastes evoked different dynamic patterns of electrical activity.

A machine learning algorithm could be trained to discriminate between these patterns. Thus, given a piece of data, the algorithm could decode from the pattern of brain-wide activity which taste a participant had received in that moment. This form of "mind reading" even made it possible to decode which of four tastants participants thought to have tasted when they were, in fact, incorrect: tastes that participants frequently confused with each other (e.g. sour and salty) were also frequently confused by the algorithm.

Kathrin Ohla said: “We were surprised to find that the onset of this decoding coincided with the earliest taste-evoked responses, within only 175 milliseconds, suggesting that quality is among the first attributes of a taste represented in the central gustatory system.”

Niko Busch adds: “In future studies, we will go a step further and try to decipher from neural activity how pleasurable a taste was in addition to its category. This would be an important step to understanding how individual taste preferences are coded in the brain and of high relevance for clinical applications such as weight loss programs.”

Journal Reference:

Sébastien M. Crouzet, Niko A. Busch and Kathrin Ohla: Taste Quality Decoding Parallels Taste Sensations, Current Biology (2015, DOI 10.1016/j.cub.2015.01.057).

http://dx.doi.org/10.1016/j.cub.2015.01.057

A pdf of the manuscript will be made available to the media via the Eurekalert pages of Cell Press.

Contact:

Dr. Kathrin Ohla
Junior Research Group
Psychophysiology of Food Perception
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal, Germany
Tel.: +49 33200 88-2543
E-Mail: kathrin.ohla@dife.de

Dr. Gisela Olias
Senior Press Officer
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal, Germany
Tel.: +49 33200 88-2278/-2335
E-Mail: olias@dife.de
oder presse@dife.de
http://www.dife.de

The German Institute of Human Nutrition (DIfE) is a member of the Leibniz Association. It explores the causes of nutrition-related diseases to develop new strategies for prevention, treatment and dietary recommendations. The research interests of the DIfE are obesity, diabetes, cardiovascular diseases and cancer. More at http://www.dife.de.

The Leibniz Association comprises 89 institutions conducting application-oriented basic research and providing scientific infrastructure. In total, around 17,500 people work for Leibniz institutions – including 8,800 scientists and researchers – with an annual budget of nearly EUR 1.5 billion. The Leibniz Association is characterized by the diversity of research topics and disciplines in which it is engaged. The research museums of the Leibniz Association preserve and explore the natural and cultural heritage. They are also the showcase of research as well as places of learning and fascination for science. Research in the Leibniz institutes is interdisciplinary and involves application-oriented basic research. The institutes’ work is of national significance and is funded jointly by the German federal government and the federal states (German Länder). More at http://www.leibniz-gemeinschaft.de.

Weitere Informationen:

http://www.dife.de/forschung/abteilungen/kurzprofil.php?abt=PSY&lang=en Junior Research Group Psychophysiology of Food Perception (PSY)
http://dx.doi.org/10.1016/j.cub.2015.01.057 A pdf of the manuscript will be made available to the media via the Eurekalert pages of Cell Press.

Dr. Gisela Olias | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>