Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Into the Mind of the Common Fruit Fly

26.09.2012
Fly neurons could reveal the root of Alzheimer's disease, says a TAU researcher
Although they're a common nuisance in the home, fruit flies have made great contributions to research in genetics and developmental biology. Now a Tel Aviv University researcher is again turning to this everyday pest to answer crucial questions about how neurons function at a cellular level — which may uncover the secrets of neurological disorders such as Alzheimer's disease.

Approximately 75 percent of the genes that are related to diseases in humans are also to be found in the fly, says Ya'ara Saad, a PhD candidate in the lab of Prof. Amir Ayali at TAU's Department of Zoology and the Sagol School of Neurosciences. There are many similarities in the functioning of the nervous system in both organisms, and by observing how neuronal networks taken from the fly grow and function outside of the body, there are many clues to the way human neuronal cells interact and the factors that influence their viability and physiology.

Saad's work, which has been published in the Journal of Molecular Histology, could help researchers to better understand how individual neurons are physically and chemically altered in response to disease and therapeutic intervention, and lead to new treatments.

Testing medications cell by cell

Saad is exploring how neural networks develop one neuron at a time. In the lab, the researchers break the fly's nervous system down into single cells, separate these cells, then place them at a distance from each other in a Petri dish. After a few days, the neurons begin to grow towards one another and establish connections, and then migrate to form clusters of cells. Finally, they re-organize themselves to form a sophisticated network, says Saad. Because these experiments uniquely allow researchers to concentrate on individual neurons, they can perform specific measurements of proteins, note electrical activity, watch synapses develop, and see how physical changes take shape.

Saad and her fellow researchers are using this technique to observe how neurodegenerative diseases take over the neurons and to potentially test various medicinal interventions. In their experiments, one group of flies is genetically modified so that it expresses a peptide called Amyloid Beta, found in protein-based plaques of human Alzheimer's disease patients. The results of these studies are then compared to those of a non-modified control group. Both strains of flies are provided by Prof. Daniel Segal of TAU's Department of Molecular Microbiology and Biotechnology.

Previous studies performed on flies expressing Amyloid Beta showed that they demonstrate Alzheimer's-like symptoms such as motor problems, impaired learning capabilities, and shorter lifespans. While this peptide has been researched for quite some time, scientists still do not know how it functions. Saad says her work may help unlock the mystery of this function. "Now I can really get into the molecular operation of Amyloid Beta inside the cell. I can watch the dysfunction in the synapses, monitor the proteins involved, and record electrical activity in a much more accessible way," she says.

Testing pharmacological agents is as simple as putting the medication into the dish and following how the cells change in response, Saad explains. Her next step will be to test various medications and search for a treatment that restores normal function, morphology, and chemical make-up to the neurons.

The benefits of invertebrates

As one of the first organisms for which scientists cracked the entire genome, there is a wealth of genetic information about the fruit fly, making it an ideal subject for her research, explains Saad. Though fly brains are simpler than those of human brains, the neurons are the same size and structure, and possess similar chemical activity. With a life span of 30 days on average, flies have a short aging process, an important consideration for the study of neurodegenerative diseases.

"A lot of basic discoveries in neurobiology have been made on invertebrates. If you want to see things on a cellular level, there are a lot of advantages to using these models," says Saad. She also says that using insects instead of mammals as experimental subjects has an additional plus: no ethical approval is necessary until the research is advanced enough to move on to more sophisticated life forms.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>