Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking natural evolution with 'promiscuous reactions' to improve the diversity of drugs

25.08.2014

A revolutionary new scientific method developed at the University of Leeds will improve the diversity of 'biologically active molecules', such as antibiotics and anti-cancer agents.

The researchers, who report their findings online today in the journal Nature Chemistry, took their inspiration from evolution in nature. The research may uncover new pharmaceutical drugs that traditional methods would never have found.


Caption: George Karageorgis prepares reaction arrays: 96 different reactions can be quickly tested in a plate the size of a DVD. Credit: Steven Kane

"Nature produces some amazing structures with really interesting biological activity, but the plant or animal did not design them. Instead the organisms gradually evolved both the chemical structures and the methods to produce them over millennia because they were of benefit. We wanted to capture the essence of this in our approach to discovering new drugs," said George Karageorgis, a PhD student from the School of Chemistry and the Astbury Centre for Structural Molecular Biology at the University of Leeds, and first author of the study.

The traditional method for discovering new drugs involves preparing new biologically active molecules by adjusting the chemical structure of an existing one slightly and analysing the results. This trial and error method is both time consuming and limits the variety of new types of drugs that are developed.

"There is a known problem with limited diversity in drug discovery. It's like a baker always going to the same storage cupboard and using the same ingredients, yet hoping to create something that tastes different," said Dr Stuart Warriner from the School of Chemistry and the Astbury Centre for Structural Molecular Biology at the University of Leeds, a co-author of the research paper.

"Our novel approach is like taking lots of different ingredients – including things you may never think will work together – and trying different combinations of these in each cup of a cupcake tray. If the result 'tastes' promising then we use this as the starting point for another set of experiments. Only at the end, when we have something really good, do we work out exactly what we have made."

In the study, the researchers investigated the reactions of 12 types of an organic molecule called a 'diazo' compound. The researchers chose to study reactions of diazo compounds as they have many possible outcomes, depending on the specific reaction conditions (such as the temperature and concentrations used) and the choice of the reaction catalyst.

Different types and quantities of the reaction 'ingredients' were added to each of the 96 wells of an experiment tray and the products of the reaction were then tested to see if they had the required biological effect.

"The key to our method is using very promiscuous reactions which can lead to many different interesting products. Normally, these are the sort of reactions that chemists would steer well clear of, but in this case it's actually an advantage and gives us the chance of finding some diverse and active structures," said Dr Warriner.

To assess the effectiveness of the reaction products as drugs, the researchers studied how well they could activate a particular biologically relevant protein called the 'androgen receptor', which is important in the progression of certain cancers.

The results informed two further rounds of experiments on the most promising candidates, from which the researchers eventually identified three biologically active molecules.

"It's very unlikely that anyone would have ever designed these molecules or thought to use these compound classes against this target, but we have reached that result very efficiently and rapidly using our methodology," said Karageorgis.

Professor Adam Nelson from the School of Chemistry and the Astbury Centre for Structural Molecular Biology at the University of Leeds, a co-author on the paper, concludes: "The beauty of our approach is that pharmaceutical companies could start using it tomorrow, as you don't need any specialist equipment. What we need to do now is to run further studies and add even more diversity to the potential products of our reactions to convince other scientists to adopt this new technique."

###

The Engineering and Physical Sciences Research Council (EPSRC) provided funding for the equipment used in this study. Karageorgis' PhD studies are supported by a University of Leeds scholarship.

Further information

George Karageorgis, Dr Stuart Warriner and Professor Adam Nelson are available for interview. Please contact Sarah Reed, Press Officer, University of Leeds, on 0113 34 34196 or email s.j.reed@leeds.ac.uk

The research paper, 'Efficient Discovery of Bioactive Scaffolds by Activity-Directed Synthesis' (http://dx.doi.org/10.1038/nchem.2034), is published online by the journal Nature Chemistry on 24 August 2014.

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. http://www.leeds.ac.uk

Sarah Reed | Eurek Alert!

Further reports about: Biology Molecular diversity drugs reaction reactions structures types

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>