Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking biological process, hydrogel signals and releases proteins

26.10.2017

An artificial system using a DNA-laced hydrogel can receive a chemical signal and release the appropriate protein, according to Penn State researchers. Further stimulation by the chemical signal continues to trigger a response.

A hydrogel is a network of polymer chains that attract water and can be used to simulate biological tissue.


A synthetic tissue releases therapeutic proteins (maroon/yellow) once triggered by metabolites (sandy brown). The metabolites contact with the double-stranded DNA (red/blue) to release the red triggering DNA. The triggering DNA activates the aptamer(cyan)-protein complex to release the protein.

Credit: Xin Zou/Jinping Lai (Penn State)

Many systems in cells and in the human body are set up with a signal and response pathway. One of the best known is that of glucose, a small sugar that triggers the release of insulin.

We've only done this recently in a petri dish," said Yong Wang, professor of biomedical engineering. "We did tests using smooth muscle cells, but we would of course like to do this in a living animal."

The researchers report in the November issue of Chemical Science, "With rational design, this biomimetic hydrogel system would constitute a general platform of controlling the output of signaling proteins for versatile potential applications such as drug delivery, cell regulation, molecular sensing and regenerative medicine."

The hydrogel, made of polyethylene glycol, is infused with two different types of DNA. One is an aptamer -- a short strand of DNA that attaches to the chemical the researchers want to release into the cell. In the case of glucose and insulin, the aptamer would bind with insulin the "drug" the researchers want to release. The other type is a double-stranded helical molecule of DNA chosen to react with the metabolite signal -- glucose -- and initiate the chemical release.

When the signaling molecule reaches a double strand of DNA, the DNA separates into two strands. One strand binds with the molecule and the other moves toward the aptamer and forces it to release the protein bound to it. The protein can then move through the cells to its normal binding site and perform its normal actions.

"This was not a simple process to create," said Wang. "One graduate student worked on it for three years before giving up. In total, it took four to five years to get this far." The researchers used adenosine as the signaling chemical and platelet-derived growth factor as the signaling protein to be released. The system can repeat the sequence, releasing signaling proteins until there are no more to release.

"We don't yet know how to easily replenish the proteins," said Wang.

The researchers tested the adenosine-PDGF-BB hydrogel system and found that without a signal chemical, the amount of signaling protein released by the hydrogel was very small. When the signal chemical -- adenosine -- was applied, the hydrogel released about 28 percent of the target signaling protein -- PDGF-BB. Other chemicals similar to adenosine, like guanosine and uridine did not cause the release of PDGF-BB from the hydrogel.

"Eventually we would like to use this system for controlled drug delivery and other biological actions," said Wang.

###

Others at Penn State working on this project are Jinping Lai, research associate; Shihui Li, recent doctoral graduate; Xuechen Shi, recent master's graduate; and James Coyne and Nan Zhao, doctoral candidates --all in Department of Biomedical Engineering; and Fengping Dong, doctoral candidate; and Yingwei Mao, associate professor, both in the Department of Biology. The National Science Foundation and the National Institutes of Health supported this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>