Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Millipedes as an example: 'Good Vibrations' lead to mating possibilities

24.10.2011
Dr. Thomas Wesener from the Zoological Research Museum Koenig in Bonn, Germany, discovered, with the help of a team of German and Belgian researchers, that female giant pill-millipedes open-up for mating only when the male produces a specific vibration pattern.

A special group of millipedes is capable of coiling themselves into a perfect ball when disturbed, like a hedgehog or an armadillo, and are therefore called 'pill millipedes' or Sphaerotheriida (Latin for 'Ball Animals'). This mechanism helps them to defend themselves against potential predators, but makes mating attempts problematic.


Zoosphaerium solitarium Wesener, 2009, a giant pill-millipede species discovered in 2009 on Madagascar. This species is only known from a single hill in northern Madagascar that is endangered by ongoing forest destruction.
Photo by Jörn Köhler, 2008


Zoosphaerium solitarium Wesener, 2009, Giant pill-millipedes can roll into a perfect ball, their only defence mechanism. Unlike other millipedes, giant pill-millipedes cannot excrete poisonous defence fluids. The rolling-in behaviour is a good defence against predators, but leads to communication break-down with a potential mate.
Photo by Jörn Köhler

Since the animals coil into a perfect ball when touched, it becomes impossible for the male to induce the female to open-up again, if it does not give a special signal. Therefore, males of some species rub special ribs on the last pair of legs across nubs on their body shield to produce sounds, similar to cicada songs, which they then broadcast to the female. This way, the female can detect that the disturbance came from a suitable partner of the same species and can, if willing, decide to unroll so that the mating can begin.

These complex mating mechanisms were described in the journal Naturwissenschaften by a team of researchers from Germany (Bonn, Darmstadt and Frankfurt) and Belgium (Tervuren). The scientists could clarify the mechanism of sound production, as well as demonstrate that each giant pill-millipede species produces a different sound. Mix-ups between species are therefore impossible. Astonishingly, giant pill-millipedes are not even capable of hearing. The signal which induces the females to open-up is the species-specific vibration pattern alone – 'good vibrations' in the literal sense!

Almost as interesting as the vibrating millipedes is the history of its discovery. In 1972 Dr. Haacker, a 33-year old Zoologist, travelled with his student Stefan Fuchs to South Africa to take recordings and study the mating of giant pill-millipedes. They collected a striking number of animals and numerous recordings of their sounds. Unfortunately, Dr. Haacker died of a rare form of leukaemia only a few weeks after he returned to Germany, and his material was left unstudied. His student packed all the animal samples, recordings, and lab book into a large box which he carried with him during his whole life as a researcher, storing it in several cellars and attics, always wondering if he should get rid of the box.

More than 30 years after his South African expedition with Dr. Haacker, Stefan Fuchs stumbled upon the work of the then-student Thomas Wesener, who published an article on newly discovered species of giant pill-millipedes from Madagascar. Fuchs wrote a note to Wesener, who is now a curator at the Museum Koenig in Bonn, Germany, describing the work he had done in South Africa and the box filled with history. Intrigued by the note, Wesener met with Fuchs to examine the contents of the box. Inside the box they found a hand-written field diary and Dr. Haacker’s lab book, as well as 80 baby food jars filled with conserved millipedes. It was a welcome surprise that most animals were still well-conserved after 30 years of storage; even the labels were still readable, but disintegrated when touched.

Even with the renewed interest in the project, it took a while longer until scientific work on the material became possible. The specimens of the Haacker-collection could not be determined until 2002, when Didier van den Spiegel from the Africa Museum in Tervuren, Belgium and several colleagues published a taxonomic revision of the giant pill-millipedes from South Africa. The analysis of the old sound files, whose quality was mixed, made the introduction of Jörn Köhler from the Hessenian State Museum Darmstadt necessary, who had some experience in the analysis of frog calls.

This long history of the research to understand the function of the sounds produced by millipedes is a good example of how important the precise documentation of scientific data is for future generations, and that many scientific riddles can only be solved through cooperation.

Publication:

Wesener, T., J. Köhler, S. Fuchs & D. van den Spiegel (2011): How to uncoil your partner - "mating songs" in giant pill-millipedes (Diplopoda: Sphaerotheriida). Naturwissenschaften 98 (11): 967–975.

Download files:

Black&White low quality video from 1972, showing mating attempts of giant pill-millipedes

www.zfmk.de/_downloads/ZFMKwesener_GiantPillMillipede_mating.AVI

Sound files of different giant pill-millipede species

www.zfmk.de/_downloads/ZFMKwesener_S_punctulatum_demo.wav

www.zfmk.de/_downloads/FMKwesener_S_punctulatum_dorsale.wav

www.zfmk.de/_downloads/ZFMKwesener_S_punctulatum_stridulation.wav

www.zfmk.de/_downloads/ZFMKwesener_S_similare_stridulation.wav

Contact: Dr. Thomas Wesener, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn
Tel.: +49 (0)228 9122 425
Fax: +49 (0)228 9122 212
E-Mail: twesener@uni-bonn.de

Sabine Heine | idw
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>