Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Millipedes as an example: 'Good Vibrations' lead to mating possibilities

Dr. Thomas Wesener from the Zoological Research Museum Koenig in Bonn, Germany, discovered, with the help of a team of German and Belgian researchers, that female giant pill-millipedes open-up for mating only when the male produces a specific vibration pattern.

A special group of millipedes is capable of coiling themselves into a perfect ball when disturbed, like a hedgehog or an armadillo, and are therefore called 'pill millipedes' or Sphaerotheriida (Latin for 'Ball Animals'). This mechanism helps them to defend themselves against potential predators, but makes mating attempts problematic.

Zoosphaerium solitarium Wesener, 2009, a giant pill-millipede species discovered in 2009 on Madagascar. This species is only known from a single hill in northern Madagascar that is endangered by ongoing forest destruction.
Photo by Jörn Köhler, 2008

Zoosphaerium solitarium Wesener, 2009, Giant pill-millipedes can roll into a perfect ball, their only defence mechanism. Unlike other millipedes, giant pill-millipedes cannot excrete poisonous defence fluids. The rolling-in behaviour is a good defence against predators, but leads to communication break-down with a potential mate.
Photo by Jörn Köhler

Since the animals coil into a perfect ball when touched, it becomes impossible for the male to induce the female to open-up again, if it does not give a special signal. Therefore, males of some species rub special ribs on the last pair of legs across nubs on their body shield to produce sounds, similar to cicada songs, which they then broadcast to the female. This way, the female can detect that the disturbance came from a suitable partner of the same species and can, if willing, decide to unroll so that the mating can begin.

These complex mating mechanisms were described in the journal Naturwissenschaften by a team of researchers from Germany (Bonn, Darmstadt and Frankfurt) and Belgium (Tervuren). The scientists could clarify the mechanism of sound production, as well as demonstrate that each giant pill-millipede species produces a different sound. Mix-ups between species are therefore impossible. Astonishingly, giant pill-millipedes are not even capable of hearing. The signal which induces the females to open-up is the species-specific vibration pattern alone – 'good vibrations' in the literal sense!

Almost as interesting as the vibrating millipedes is the history of its discovery. In 1972 Dr. Haacker, a 33-year old Zoologist, travelled with his student Stefan Fuchs to South Africa to take recordings and study the mating of giant pill-millipedes. They collected a striking number of animals and numerous recordings of their sounds. Unfortunately, Dr. Haacker died of a rare form of leukaemia only a few weeks after he returned to Germany, and his material was left unstudied. His student packed all the animal samples, recordings, and lab book into a large box which he carried with him during his whole life as a researcher, storing it in several cellars and attics, always wondering if he should get rid of the box.

More than 30 years after his South African expedition with Dr. Haacker, Stefan Fuchs stumbled upon the work of the then-student Thomas Wesener, who published an article on newly discovered species of giant pill-millipedes from Madagascar. Fuchs wrote a note to Wesener, who is now a curator at the Museum Koenig in Bonn, Germany, describing the work he had done in South Africa and the box filled with history. Intrigued by the note, Wesener met with Fuchs to examine the contents of the box. Inside the box they found a hand-written field diary and Dr. Haacker’s lab book, as well as 80 baby food jars filled with conserved millipedes. It was a welcome surprise that most animals were still well-conserved after 30 years of storage; even the labels were still readable, but disintegrated when touched.

Even with the renewed interest in the project, it took a while longer until scientific work on the material became possible. The specimens of the Haacker-collection could not be determined until 2002, when Didier van den Spiegel from the Africa Museum in Tervuren, Belgium and several colleagues published a taxonomic revision of the giant pill-millipedes from South Africa. The analysis of the old sound files, whose quality was mixed, made the introduction of Jörn Köhler from the Hessenian State Museum Darmstadt necessary, who had some experience in the analysis of frog calls.

This long history of the research to understand the function of the sounds produced by millipedes is a good example of how important the precise documentation of scientific data is for future generations, and that many scientific riddles can only be solved through cooperation.


Wesener, T., J. Köhler, S. Fuchs & D. van den Spiegel (2011): How to uncoil your partner - "mating songs" in giant pill-millipedes (Diplopoda: Sphaerotheriida). Naturwissenschaften 98 (11): 967–975.

Download files:

Black&White low quality video from 1972, showing mating attempts of giant pill-millipedes

Sound files of different giant pill-millipede species

Contact: Dr. Thomas Wesener, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn
Tel.: +49 (0)228 9122 425
Fax: +49 (0)228 9122 212

Sabine Heine | idw
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>