Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone in fight against deadly disease

08.12.2010
Scientists work together to map and solve 500 protein structures

Scientists at Seattle Biomedical Research Institute (Seattle BioMed) and Northwestern University Feinberg School of Medicine have reached a major milestone in the effort to wipe out some of the most lethal diseases on the planet.

As leaders of two large structural genomics centers, they've experimentally determined 500 three-dimensional protein structures from a number of bacterial and protozoan pathogens, which could potentially lead to new drugs, vaccines and diagnostics to combat deadly infectious diseases.

Some of the structures solved by the centers come from well-known, headline-grabbing organisms, like the H1N1 flu virus. Portraits of these protein structures, ranging from the plague, cholera and rabies to H1N1 can been seen on the websites www.csgid.org and www.ssgcid.org.

The Center for Structural Genomics of Infectious Diseases (CSGID), which is led by Wayne Anderson, Professor of Molecular Pharmacology and Biological Chemistry at Feinberg (Chicago, IL), and the Seattle Structural Genomics Center for Infectious Disease (SSGCID), led by Peter Myler, Full Member at Seattle BioMed and Affiliate Professor of Global Health and Medical Education & Biomedical Informatics at the University of Washington, were created in 2007 through contracts from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH). The Centers' mission is to apply genome-scale approaches in solving protein structures from biodefense organisms, as well as those causing emerging and re-emerging diseases.

"By determining the three-dimensional structure of these proteins, we can identify important pockets or clefts and design small molecules which will disrupt their disease-causing function," said Myler. "Each solved structure provides an important piece of new knowledge for scientists about a wide variety of diseases."

Recently, scientists from the Seattle group, which includes Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory in addition to Seattle BioMed, provided structural data that offered insight into how specific differences in one of the RNA polymerase proteins in the swine flu virus changed the way it interacts with host cells, allowing it to infect humans. This information could provide a basis for future antiviral agents that could be used to prevent replication of the flu virus.

Other structures solved come from little known or emerging pathogens that cause disease and death, but have been less well studied by the research community. For example, the SSGCID solved the first protein structure from Rickettsia, bacterial pathogens carried by many ticks, fleas and lice that causes several forms of typhus and spotted fever.

Recently, scientists at CSGID determined the structure of a crucial enzyme in the shikimate pathway of Clostridium difficile, which is the most serious cause of antibiotic-associated diarrhea in humans and can lead to pseudomembranous colitis, a severe infection of the colon often resulting from eradication of the normal gut flora by antibiotics. The shikimate pathway is essential for plants and bacteria like C. difficile, but is not present in animals, making this enzyme an attractive antibiotic target. CSGID researchers have also determined the structures of numerous proteins from other disease-causing organisms such as Bacillus anthracis (anthrax), Salmonella enterica (salmonellosis food poisoning), Vibrio cholerae (cholera), Yersinia pestis (plague), and Staphylococcus aureus (staph infections).

The CSGID is a consortium which includes researchers from the University of Chicago (Chicago, IL), the J. Craig Venter Institute (Rockville, MD), University College London (London, United Kingdom), the University of Toronto (Toronto, Canada), the University of Virginia (Charlottesville, VA), the University of Texas Southwestern Medical Center at Dallas (Dallas, TX), and the Washington University School of Medicine (St. Louis, MO), in addition to Northwestern University.

Mapping the structures of drug-resistant bacteria is also a priority for the two centers. "Drug-resistant bacteria are an increasing threat to us and we need to get new drugs to stay ahead of them," said Anderson, Principal Investigator of CSGID. "The recent years have brought not only an avalanche of new macromolecular structures, but also significant advances in the protein structure determination methodology that are now making their way into drug discovery. We provide the structural information so that in the future companies can develop new drugs to overcome resistance."

The structures solved by the Centers are immediately made available to the international scientific community through the NIH-supported Protein Data Bank (www.pdb.org), providing a "blueprint" for development of new drugs, vaccines and diagnostics.

The Centers are on track to ultimately identify nearly 500 more structures by the end of the current five-year NIH contract in 2012. Apart from the protein structures, the two Centers make available to the scientific community all the clones and purified proteins that they produce in order to facilitate a global collaboration in the fight against deadly diseases.

Erin White | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>