Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone in fight against deadly disease

08.12.2010
Scientists work together to map and solve 500 protein structures

Scientists at Seattle Biomedical Research Institute (Seattle BioMed) and Northwestern University Feinberg School of Medicine have reached a major milestone in the effort to wipe out some of the most lethal diseases on the planet.

As leaders of two large structural genomics centers, they've experimentally determined 500 three-dimensional protein structures from a number of bacterial and protozoan pathogens, which could potentially lead to new drugs, vaccines and diagnostics to combat deadly infectious diseases.

Some of the structures solved by the centers come from well-known, headline-grabbing organisms, like the H1N1 flu virus. Portraits of these protein structures, ranging from the plague, cholera and rabies to H1N1 can been seen on the websites www.csgid.org and www.ssgcid.org.

The Center for Structural Genomics of Infectious Diseases (CSGID), which is led by Wayne Anderson, Professor of Molecular Pharmacology and Biological Chemistry at Feinberg (Chicago, IL), and the Seattle Structural Genomics Center for Infectious Disease (SSGCID), led by Peter Myler, Full Member at Seattle BioMed and Affiliate Professor of Global Health and Medical Education & Biomedical Informatics at the University of Washington, were created in 2007 through contracts from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH). The Centers' mission is to apply genome-scale approaches in solving protein structures from biodefense organisms, as well as those causing emerging and re-emerging diseases.

"By determining the three-dimensional structure of these proteins, we can identify important pockets or clefts and design small molecules which will disrupt their disease-causing function," said Myler. "Each solved structure provides an important piece of new knowledge for scientists about a wide variety of diseases."

Recently, scientists from the Seattle group, which includes Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory in addition to Seattle BioMed, provided structural data that offered insight into how specific differences in one of the RNA polymerase proteins in the swine flu virus changed the way it interacts with host cells, allowing it to infect humans. This information could provide a basis for future antiviral agents that could be used to prevent replication of the flu virus.

Other structures solved come from little known or emerging pathogens that cause disease and death, but have been less well studied by the research community. For example, the SSGCID solved the first protein structure from Rickettsia, bacterial pathogens carried by many ticks, fleas and lice that causes several forms of typhus and spotted fever.

Recently, scientists at CSGID determined the structure of a crucial enzyme in the shikimate pathway of Clostridium difficile, which is the most serious cause of antibiotic-associated diarrhea in humans and can lead to pseudomembranous colitis, a severe infection of the colon often resulting from eradication of the normal gut flora by antibiotics. The shikimate pathway is essential for plants and bacteria like C. difficile, but is not present in animals, making this enzyme an attractive antibiotic target. CSGID researchers have also determined the structures of numerous proteins from other disease-causing organisms such as Bacillus anthracis (anthrax), Salmonella enterica (salmonellosis food poisoning), Vibrio cholerae (cholera), Yersinia pestis (plague), and Staphylococcus aureus (staph infections).

The CSGID is a consortium which includes researchers from the University of Chicago (Chicago, IL), the J. Craig Venter Institute (Rockville, MD), University College London (London, United Kingdom), the University of Toronto (Toronto, Canada), the University of Virginia (Charlottesville, VA), the University of Texas Southwestern Medical Center at Dallas (Dallas, TX), and the Washington University School of Medicine (St. Louis, MO), in addition to Northwestern University.

Mapping the structures of drug-resistant bacteria is also a priority for the two centers. "Drug-resistant bacteria are an increasing threat to us and we need to get new drugs to stay ahead of them," said Anderson, Principal Investigator of CSGID. "The recent years have brought not only an avalanche of new macromolecular structures, but also significant advances in the protein structure determination methodology that are now making their way into drug discovery. We provide the structural information so that in the future companies can develop new drugs to overcome resistance."

The structures solved by the Centers are immediately made available to the international scientific community through the NIH-supported Protein Data Bank (www.pdb.org), providing a "blueprint" for development of new drugs, vaccines and diagnostics.

The Centers are on track to ultimately identify nearly 500 more structures by the end of the current five-year NIH contract in 2012. Apart from the protein structures, the two Centers make available to the scientific community all the clones and purified proteins that they produce in order to facilitate a global collaboration in the fight against deadly diseases.

Erin White | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>