Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mild-mannered reagents

14.04.2009
Comparing aluminate and zincate compounds has revealed their versatility, which provides new tools for chemists

An aluminum-based chemical reagent designed by a RIKEN scientist could prove to be a useful way of building complex carbon compounds, such as novel pharmaceuticals.

The aluminate reagent (i-Bu3Al(TMP)Li) is able to pluck a hydrogen atom away from a carbon atom to create a new carbon–aluminum bond. The aluminum can then be replaced by a wide variety of other chemical groups, allowing new compounds to be constructed.

Masanobu Uchiyama of RIKEN’s Advanced Science Institute in Wako, and colleagues at Tohuku University, Japan, and the University of Cambridge, UK, have now uncovered exactly how the aluminate reagent works, and for which reactions it is most suitable1.

Uchiyama and colleagues used density functional theory to calculate how chemical reactions involving the aluminum reagent were likely to proceed. This technique relies on quantum theory to determine how electrons are spread around the molecules involved in a reaction.

This revealed that it is specifically the ring-shaped TMP portion of the aluminate reagent that is responsible for removing a hydrogen atom at the beginning of the reaction; a conclusion confirmed by subsequent experiments.

The aluminate also requires only a single chemical step to remove the hydrogen atom from its target. But this process is markedly different when using an analogous zinc-based reagent investigated by the team.

By creating detailed computer models of both reagents caught in mid-reaction, the scientists found that their reaction pathways diverge because the aluminum atom is less able to attract electrons located on a nitrogen atom in a different part of the intermediate molecule.

The upshot is that while the zincate reagent tends to create the most energetically stable product molecule, the aluminate reagent simply replaces the most easily removed hydrogen atom, leading to a different end product.

Strong bases incorporating lithium or magnesium have been used traditionally for these reactions. But these reagents can inadvertently scramble part of the molecules involved in the reaction, and work only at very low temperatures.

Aluminates and zincates use much milder reaction conditions and are less likely to interfere with other parts of the reactant molecules, says Uchiyama. Choosing the appropriate reagent will give chemists the ability to control the course of chemical reactions that may have more than one possible product.

Knowing the precise path of the aluminate’s reaction should allow the scientists to improve the yields of compounds it generates, he adds. The team is now testing both reagents to assess how widely they can be used by chemists.

Reference

1. Naka, H., Morey, J.V., Haywood, J., Eisler, D.J., McPartlin, M., Garcia, F., Kudo, H., Kondo, Y., Uchiyama, M. & Wheatley, A.E.H. Mixed alkylamido aluminate as a kinetically controlled base. Journal of the American Chemical Society 130, 16193–16200 (2008).

The corresponding author for this highlight is based at the RIKEN Advanced Elements Chemistry Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/673/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>