Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migration Negation

07.11.2014

Blocking a receptor may combat cancer metastasis

Most cancer deaths occur because of metastasis, yet progress in preventing and treating migratory cancer cells has been slow.


Like a transformer surge that makes birds on a wire take flight, new research has found that the receptor Frizzled-2 can induce cancer cells to migrate. Image: O'Reilly Science Art

“It’s been particularly challenging to design drugs that work against metastasis,” said Taran Gujral, research fellow in systems biology at Harvard Medical School. “Unfortunately, many cancers aren’t detected until after they’ve already metastasized.”

Gujral and colleagues have now identified a cellular culprit that should help researchers better understand how metastasis begins. Their findings may also inform the design of new treatments to combat it.

As reported Nov. 6 in Cell, the team discovered that an overabundance of a cell receptor called Frizzled-2, along with its activator, Wnt5, appears to raise a tumor’s likelihood of metastasizing by triggering a process known as the epithelial-mesenchymal transition, or EMT.

Get more HMS news here

EMT normally plays a role in human development, allowing certain cells to become mobile and invasive so they can move around and form new structures in the growing embryo. Previous studies have linked EMT to cancer metastasis, where tumor cells acquire those properties to disastrous effect. The question has been: How exactly does that happen?

“This study makes big headway on an extremely important medical problem: what makes one type of tumor metastasize and another type not,” said Marc Kirschner, John Franklin Enders University Professor of Systems Biology at HMS, chair of the Department of Systems Biology and co-senior author of the paper.

“On a basic biology level, it also reports the unexpected discovery of a brand-new cell signaling pathway,” Kirschner added.

After learning the importance of Frizzled-2, the researchers developed an antibody to block it. The antibody curbed metastasis in mice with certain types of tumors.

The researchers are now pursuing further studies of the antibody with the hope that it can one day be turned into a metastasis-fighting drug.

“Discovering that Frizzled-2 and Wnt5 play a causal role in EMT and metastasis is directly actionable,” said co-senior author Gavin MacBeath, lecturer in systems biology at HMS and senior vice president at Merrimack Pharmaceuticals.

“Frizzled-2 provides a promising new therapeutic target to prevent or delay metastasis, and both Frizzled-2 and Wnt5 are potential biomarkers that can be used to identify which patients are most at risk of metastasis and could benefit from Frizzled-2-directed therapy,” MacBeath said.

The study also illuminates an important biological process and may contribute to better predictions of metastasis likelihood and patient survival.

Researchers had known that cell signaling pathways activated by the Wnt (“wint”) protein family influence EMT, but they weren’t sure how. First author Gujral and his colleagues examined various Wnt signals, and the Frizzled family of receptors they bind to, in many cancer cell lines.

They found that Wnt5 and its receptor, Frizzled-2, were present at higher than normal levels in metastatic liver, breast, lung and colon cancer cell lines. In tissue samples from 48 cancer patients, Frizzled-2 was higher in late-stage cancers than in early-stage cancers. And patients with late-stage liver cancer who had high levels of Frizzled-2 had lower survival rates.

The team then painstakingly pieced together the players linking Wnt5 with the onset of metastatic behavior and discovered a previously unknown Wnt pathway. Frizzled-2, it turned out, could activate STAT3, which is known to drive cancer through EMT.

In addition to exploring Frizzled-2 as a new drug target, a potential biomarker for metastasis and a possible addition to the factors that predict patient survival, next steps include nailing down other pathway players to gain a full understanding of EMT in cancer and beyond.

“Although it will take time to determine whether this discovery can be translated into a novel therapeutic option for patients, I am very excited about the potential,” said MacBeath. “Significant advances in combating cancer must come from new approaches, and developing precision therapeutics that prevent metastasis provides a promising and different way to fight this devastating disease.”

Other authors on the paper were Peter Sorger, Otto Krayer Professor of Systems Pharmacology at HMS; Leonid Peshkin, lecturer on systems biology at HMS; and Marina Chan, former postdoctoral fellow in systems biology in the MacBeath Lab.

This work was funded by the National Institutes of Health (grants R01 GM072872, P50 GM68762, U54 HG006097, R01 HD073104 and R01 GM103785).

David Cameron | EurekAlert!
Further information:
http://hms.harvard.edu/news/migration-negation

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>