Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Migrating monarch butterflies 'nose' their way to Mexico

UMass Medical School neurobiologists identify a new role of the antennae in butterfly migration

The annual migration of monarch butterflies from across eastern North America to a specific grove of fir trees in Mexico has long fascinated scientists who have sought to understand just how these delicate creatures can navigate up to 2,000 miles to a single location.

Neurobiologists at the University of Massachusetts Medical School (UMMS) have now found that a key mechanism that helps steer the butterflies to their ultimate destination resides not in the insects' brains, as previously thought, but in their antennae, a surprising discovery that provides an entirely new perspective of the antenna's role in migration.

"We've known that the insect antenna is a remarkable organ, responsible for sensing not only olfactory cues but wind direction and even sound vibration," said Steven M. Reppert, MD, professor and chair of neurobiology and senior author of the study. "But its role in precise orientation over the course of butterfly migration is an intriguing new discovery, one that may spark a new line of investigation into neural connections between the antennae and the sun compass, and navigation mechanisms in other insects."

In a paper to be published in the journal Science, Reppert and his colleagues Christine Merlin, PhD, and Robert J. Gegear, PhD, have demonstrated that the butterflies' antennae —formerly believed to be primarily odor detectors—are actually necessary for sun-related orientation, a critical function commonly thought to be housed solely in the insect's brain.

"Previous studies have shown that butterflies use their circadian clock, an internal timing device such as the one that controls our own sleep-wake cycles, to correct their flight orientation and maintain a southerly course even as the sun moves across the sky," Reppert said. The time correction factor of the sun compass mechanism was assumed to reside in the brain, where the sun compass itself is located, although this presumptive role of brain clocks had never been tested directly.

Recalling an observation from 50 years ago—made even before the discovery that millions of monarchs fly to specific wintering grounds in Mexico—when it was noticed that migrating butterflies became lost in free flight when their antennae were removed, Reppert and colleagues sought to unravel the role of the antennae in migration.

In their studies, the investigators removed the antennae of a number of butterflies and tested their ability to fly south while tethered in an outdoor flight simulator rigged to calculate the insects' flight direction. They found that the antennaeless migratory butterflies could not orient themselves to the proper southerly direction, while butterflies with intact antennae could orient correctly. They also showed that the molecular cycles of the brain clocks were not altered by removing the antennae and that the antennae actually contain circadian clocks that function independently of those in the brain.

The researchers next covered the antennae in black paint, effectively blocking light sensing by the antennal clocks. Those butterflies homed in on an incorrectly fixed direction: the insect's brain could sense light but couldn't adjust the timing of the sun's movement across the sky in order to steer towards the proper destination. However, when the team used clear paint—which did not alter antennal light input—the butterflies accurately established the southerly flight orientation, indicating that the antenna's reading of light is key to navigation.

The Science paper, "Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies," will be published September 25. Reppert, who is also the Higgins Family Professor of Neuroscience at UMMS, has been a pioneering force in the effort to understand monarch butterfly navigation and migration and hopes to trace the neural connection between the antennae clocks and the brain's sun compass. In addition, his team is investigating other functions of the antennae that they believe are critical for successful migration.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $200 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the University of Massachusetts Medical School is to advance the health and well-being of the people of the Commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Alison Duffy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>