Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migrating monarch butterflies 'nose' their way to Mexico

28.09.2009
UMass Medical School neurobiologists identify a new role of the antennae in butterfly migration

The annual migration of monarch butterflies from across eastern North America to a specific grove of fir trees in Mexico has long fascinated scientists who have sought to understand just how these delicate creatures can navigate up to 2,000 miles to a single location.

Neurobiologists at the University of Massachusetts Medical School (UMMS) have now found that a key mechanism that helps steer the butterflies to their ultimate destination resides not in the insects' brains, as previously thought, but in their antennae, a surprising discovery that provides an entirely new perspective of the antenna's role in migration.

"We've known that the insect antenna is a remarkable organ, responsible for sensing not only olfactory cues but wind direction and even sound vibration," said Steven M. Reppert, MD, professor and chair of neurobiology and senior author of the study. "But its role in precise orientation over the course of butterfly migration is an intriguing new discovery, one that may spark a new line of investigation into neural connections between the antennae and the sun compass, and navigation mechanisms in other insects."

In a paper to be published in the journal Science, Reppert and his colleagues Christine Merlin, PhD, and Robert J. Gegear, PhD, have demonstrated that the butterflies' antennae —formerly believed to be primarily odor detectors—are actually necessary for sun-related orientation, a critical function commonly thought to be housed solely in the insect's brain.

"Previous studies have shown that butterflies use their circadian clock, an internal timing device such as the one that controls our own sleep-wake cycles, to correct their flight orientation and maintain a southerly course even as the sun moves across the sky," Reppert said. The time correction factor of the sun compass mechanism was assumed to reside in the brain, where the sun compass itself is located, although this presumptive role of brain clocks had never been tested directly.

Recalling an observation from 50 years ago—made even before the discovery that millions of monarchs fly to specific wintering grounds in Mexico—when it was noticed that migrating butterflies became lost in free flight when their antennae were removed, Reppert and colleagues sought to unravel the role of the antennae in migration.

In their studies, the investigators removed the antennae of a number of butterflies and tested their ability to fly south while tethered in an outdoor flight simulator rigged to calculate the insects' flight direction. They found that the antennaeless migratory butterflies could not orient themselves to the proper southerly direction, while butterflies with intact antennae could orient correctly. They also showed that the molecular cycles of the brain clocks were not altered by removing the antennae and that the antennae actually contain circadian clocks that function independently of those in the brain.

The researchers next covered the antennae in black paint, effectively blocking light sensing by the antennal clocks. Those butterflies homed in on an incorrectly fixed direction: the insect's brain could sense light but couldn't adjust the timing of the sun's movement across the sky in order to steer towards the proper destination. However, when the team used clear paint—which did not alter antennal light input—the butterflies accurately established the southerly flight orientation, indicating that the antenna's reading of light is key to navigation.

The Science paper, "Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies," will be published September 25. Reppert, who is also the Higgins Family Professor of Neuroscience at UMMS, has been a pioneering force in the effort to understand monarch butterfly navigation and migration and hopes to trace the neural connection between the antennae clocks and the brain's sun compass. In addition, his team is investigating other functions of the antennae that they believe are critical for successful migration.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $200 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the University of Massachusetts Medical School is to advance the health and well-being of the people of the Commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Alison Duffy | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>