Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Migrating monarch butterflies 'nose' their way to Mexico

UMass Medical School neurobiologists identify a new role of the antennae in butterfly migration

The annual migration of monarch butterflies from across eastern North America to a specific grove of fir trees in Mexico has long fascinated scientists who have sought to understand just how these delicate creatures can navigate up to 2,000 miles to a single location.

Neurobiologists at the University of Massachusetts Medical School (UMMS) have now found that a key mechanism that helps steer the butterflies to their ultimate destination resides not in the insects' brains, as previously thought, but in their antennae, a surprising discovery that provides an entirely new perspective of the antenna's role in migration.

"We've known that the insect antenna is a remarkable organ, responsible for sensing not only olfactory cues but wind direction and even sound vibration," said Steven M. Reppert, MD, professor and chair of neurobiology and senior author of the study. "But its role in precise orientation over the course of butterfly migration is an intriguing new discovery, one that may spark a new line of investigation into neural connections between the antennae and the sun compass, and navigation mechanisms in other insects."

In a paper to be published in the journal Science, Reppert and his colleagues Christine Merlin, PhD, and Robert J. Gegear, PhD, have demonstrated that the butterflies' antennae —formerly believed to be primarily odor detectors—are actually necessary for sun-related orientation, a critical function commonly thought to be housed solely in the insect's brain.

"Previous studies have shown that butterflies use their circadian clock, an internal timing device such as the one that controls our own sleep-wake cycles, to correct their flight orientation and maintain a southerly course even as the sun moves across the sky," Reppert said. The time correction factor of the sun compass mechanism was assumed to reside in the brain, where the sun compass itself is located, although this presumptive role of brain clocks had never been tested directly.

Recalling an observation from 50 years ago—made even before the discovery that millions of monarchs fly to specific wintering grounds in Mexico—when it was noticed that migrating butterflies became lost in free flight when their antennae were removed, Reppert and colleagues sought to unravel the role of the antennae in migration.

In their studies, the investigators removed the antennae of a number of butterflies and tested their ability to fly south while tethered in an outdoor flight simulator rigged to calculate the insects' flight direction. They found that the antennaeless migratory butterflies could not orient themselves to the proper southerly direction, while butterflies with intact antennae could orient correctly. They also showed that the molecular cycles of the brain clocks were not altered by removing the antennae and that the antennae actually contain circadian clocks that function independently of those in the brain.

The researchers next covered the antennae in black paint, effectively blocking light sensing by the antennal clocks. Those butterflies homed in on an incorrectly fixed direction: the insect's brain could sense light but couldn't adjust the timing of the sun's movement across the sky in order to steer towards the proper destination. However, when the team used clear paint—which did not alter antennal light input—the butterflies accurately established the southerly flight orientation, indicating that the antenna's reading of light is key to navigation.

The Science paper, "Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies," will be published September 25. Reppert, who is also the Higgins Family Professor of Neuroscience at UMMS, has been a pioneering force in the effort to understand monarch butterfly navigation and migration and hopes to trace the neural connection between the antennae clocks and the brain's sun compass. In addition, his team is investigating other functions of the antennae that they believe are critical for successful migration.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $200 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the University of Massachusetts Medical School is to advance the health and well-being of the people of the Commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Alison Duffy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>