Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Was mighty T. rex 'Sue' felled by a lowly parasite?

When pondering the demise of a famous dinosaur such as 'Sue,' the mighty Tyrannosaurus rex whose fossilized remains are a star attraction of the Field Museum in Chicago, it is hard to avoid the image of clashing Cretaceous titans engaged in bloody, mortal combat.

It is an image commonly promoted by museums and dinosaur aficionados. Sue's remains, in fact, exhibit holes in her jaw that some believed were battle scars, the result of conflict with another dinosaur, possibly another T. rex.

But a new study, published today (Sept. 29, 2009) in the online journal Public Library of Science One, provides evidence that Sue, perhaps the most famous dinosaur in the world, was felled in more mundane fashion by a lowly parasite that still afflicts modern birds. The study, conducted by an international team of researchers led by Ewan D.S. Wolff of the University of Wisconsin-Madison and Steven W. Salisbury of the University of Queensland, Australia, pins the demise of Sue and other tyrannosaurs with similar scars on an avian parasitic infection called trichomonosis, caused by a single-celled parasite that causes similar pathologies on the mandibles of modern birds, raptors in particular.

It is possible the infection in her throat and mouth may have been so acute that the 42-foot-long, 7-ton dinosaur starved to death, says Wolff, a vertebrate paleontologist and a third-year student at the UW-Madison School of Veterinary Medicine. Co-authors of the study include famed paleontologist John R. Horner of the Museum of the Rockies, which funded the study, and David J. Varricchio of Montana State University.

The focus of the new study was a survey of lesions on the jaws of Sue and nine other tyrannosaur specimens. The lesions had previously been attributed to bite wounds or, possibly, a bacterial infection.

"What drew my attention to trichomonosis as a potential candidate for these mysterious lesions on the jaws of tyrannosaurs is the manifestation of the effects of the disease in [bird] raptors," explains Wolff. "When we started looking at trichomonosis in greater depth, there was a story that matched some lines of evidence for transmission of the disease in tyrannosaurs."

In birds, trichomonosis is caused by a protozoan parasite called Trichomonas gallinae. It can be transmitted from birds such as pigeons, which commonly carry the parasite but often suffer few ill effects, to raptors such as falcons and hawks, where it causes serious lesions in the mandibles. The pattern of lesions, says Wolff, closely matches the holes in the jaws of tyrannosaurs and occurs in the same anatomical location.

The scars of combat among tyrannosaurs and other dinosaurs, Wolff notes, are not uncommon, but differ notably from the lesions that are the focus of the current study. The holes caused by trichomonosis tend to be neat and have relatively smooth edges, while bite marks are often messy, and they scar and puncture bone in ways that are not readily comparable.

Tyrannosaurs, notes Wolff, are known to have been gregarious, intermingling, fighting amongst themselves, and sometimes eating one another. Transmission of the parasite may have been through salivary contact or cannibalism, he says, noting that there is no known evidence of trichomonosis in other dinosaurs.

"This leads us to suspect that tyrannosaurs might have been the source of the disease and its transmission in its environment," Wolff says.

For the disease to manifest itself in the jaws of Sue and other tyrannosaurs, it would have had to be at an advanced stage as the parasite typically sets up housekeeping as a film in the back of the throat.

"The lesions we observe on Sue suggest a very advanced stage of the disease and may even have been the cause of her demise," says Wolff. "It is a distinct possibility as it would have made feeding incredibly difficult. You have to have a viable pharynx. Without that, you won't make it for very long, no matter how powerful you are."

Ewan D. S. Wolff | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>