Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midget plant gets makeover

24.06.2009
A tiny plant with a long name (Arabidopsis thaliana) helps researchers from over 120 countries learn how to design new crops to help meet increasing demands for food, biofuels, industrial materials, and new medicines.

The genes, proteins, and other traits of this fast-growing, tiny mustard plant reside in a vast database dubbed the Arabidopsis Information Resource (TAIR), which has over 1.6 million page hits each month.

The TAIR group, headed by Dr. Eva Huala at Carnegie's Department of Plant Biology, just released a new version of the genome sequence of this model plant, which includes an array of improvements and novel features that promise to accelerate this critical research.

The new TAIR9 genome release contains detailed information on all 33,518 genes that make up this tiny plant (including 114 newly discovered genes and 168 new pseudogenes), the proteins produced by these genes, and extensive new experimental and computationally predicted gene-function information.

Huala highlighted the advances: "We now have a ranking system that provides a measure of our confidence that the structure of a specific gene is correct; we've overhauled information on pseudogenes—the evolutionary remnants that start out as copies of conventional protein-coding genes and sometimes take on interesting new functions; and we've made extensive updates to the genome sequence based on new sequence data submitted to TAIR."

In 2000, Arabidopsis was the first plant genome to be sequenced. Partly due to the vast experimental data on gene function, which TAIR has painstakingly extracted from the literature and associated to the genes, and because of an extensive set of molecular tools developed for this plant, the Arabidopsis genome is the most advanced plant genome in the world and is the most commonly used experimental plant today. Its small size and fast growth allow large-scale experiments on drought and salt tolerance, resistance to plant diseases, and other topics with a direct impact on economic and food quality issues to be carried out quickly and economically, and the results applied to important crop species.

"TAIR is a crucial resource for plant sciences, but its impact goes far beyond," remarked Dr. Wolf Frommer, director of Carnegie's Department of Plant Biology. "TAIR9, as the 'green' reference database, is crucial for understanding the function and engineering of algae as well as crop plants. It is the basis for all improvement of crop plants to meet the challenges of a growing population as well as climate change."

The Arabidopsis Information Resource (TAIR) collects information and maintains a database of genetic and molecular biology data for Arabidopsis thaliana, a widely used model plant. TAIR is produced by the Carnegie Institution's Department of Plant Biology in Palo Alto, CA. Funding is provided by the National Science Foundation, (Grant No. DBI-9978564 and DBI-0417062).

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Eva Huala | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>