Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midget plant gets makeover

24.06.2009
A tiny plant with a long name (Arabidopsis thaliana) helps researchers from over 120 countries learn how to design new crops to help meet increasing demands for food, biofuels, industrial materials, and new medicines.

The genes, proteins, and other traits of this fast-growing, tiny mustard plant reside in a vast database dubbed the Arabidopsis Information Resource (TAIR), which has over 1.6 million page hits each month.

The TAIR group, headed by Dr. Eva Huala at Carnegie's Department of Plant Biology, just released a new version of the genome sequence of this model plant, which includes an array of improvements and novel features that promise to accelerate this critical research.

The new TAIR9 genome release contains detailed information on all 33,518 genes that make up this tiny plant (including 114 newly discovered genes and 168 new pseudogenes), the proteins produced by these genes, and extensive new experimental and computationally predicted gene-function information.

Huala highlighted the advances: "We now have a ranking system that provides a measure of our confidence that the structure of a specific gene is correct; we've overhauled information on pseudogenes—the evolutionary remnants that start out as copies of conventional protein-coding genes and sometimes take on interesting new functions; and we've made extensive updates to the genome sequence based on new sequence data submitted to TAIR."

In 2000, Arabidopsis was the first plant genome to be sequenced. Partly due to the vast experimental data on gene function, which TAIR has painstakingly extracted from the literature and associated to the genes, and because of an extensive set of molecular tools developed for this plant, the Arabidopsis genome is the most advanced plant genome in the world and is the most commonly used experimental plant today. Its small size and fast growth allow large-scale experiments on drought and salt tolerance, resistance to plant diseases, and other topics with a direct impact on economic and food quality issues to be carried out quickly and economically, and the results applied to important crop species.

"TAIR is a crucial resource for plant sciences, but its impact goes far beyond," remarked Dr. Wolf Frommer, director of Carnegie's Department of Plant Biology. "TAIR9, as the 'green' reference database, is crucial for understanding the function and engineering of algae as well as crop plants. It is the basis for all improvement of crop plants to meet the challenges of a growing population as well as climate change."

The Arabidopsis Information Resource (TAIR) collects information and maintains a database of genetic and molecular biology data for Arabidopsis thaliana, a widely used model plant. TAIR is produced by the Carnegie Institution's Department of Plant Biology in Palo Alto, CA. Funding is provided by the National Science Foundation, (Grant No. DBI-9978564 and DBI-0417062).

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Eva Huala | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>