Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the middle finger has such a slow connection

07.02.2012
PNAS: Inhibition of neighbouring nerve cells determines the reaction speed
RUB neuroscientists find new role of cortical maps
Each part of the body has its own nerve cell area in the brain –we therefore have a map of our bodies in our heads. The functional significance of these maps is largely unclear. What effects they can have is now shown by RUB neuroscientists through reaction time measurements combined with learning experiments and “computational modelling”. They have been able to demonstrate that inhibitory influences of neighbouring “finger nerve cells” affect the reaction time of a finger.

The fingers on the outside – i.e. the thumb and little finger - therefore react faster than the middle finger, which is exposed to the “cross fire” of two neighbours on each side. Through targeted learning, this speed handicap can be compensated. The working group led by PD Dr. Hubert Dinse (Neural Plasticity Lab at the Institute for Neuroral Computation) report in the current issue of PNAS.

Thumb and little finger are the quickest
The researchers set subjects a simple task to measure the speed of decision: they showed them an image on a monitor that represented all ten fingers. If one of the fingers was marked, the subjects were to press a corresponding key as quickly as possible with that finger. The thumb and little finger were the fastest. The middle finger brought up the rear. “You might think that this has anatomical reasons or depends on the exercise” said Dr Dinse, “but we were able to rule that out through further tests. In principle, each finger is able to react equally quickly. Only in the selection task, the middle finger is at a distinct disadvantage.”

Computer simulation depicts brain maps

To explain their observations, the researchers used computer simulations based on a so-called mean-field model. It is especially suited for modelling large neuronal networks in the brain. For these simulations, each individual finger is represented by a group of nerve cells, which are arranged in the form of a topographic map of the fingers based on the actual conditions in the somatosensory cortex of the brain. “Adjacent fingers are adjacent in the brain too, and thus also in the simulation”, explained Dr. Dinse. The communication of the nerve cells amongst themselves is organised so that the nerve cells interact through mutual excitation and inhibition.

Inhibitory influences from both sides slow down the middle finger

The computer simulations showed that the longer reaction time of the middle finger in a multiple choice task is a consequence of the fact that the middle finger is within the inhibition range of the two adjacent fingers. The thumb and little finger on the other hand only receive an inhibitory effect of comparable strength from one adjacent finger each. “In other words, the high level of inhibition received by the nerve cells of the middle fingers mean that it takes longer for the excitement to build up – they therefore react more slowly” said Dr. Dinse.

Targeted reduction of the inhibition through learning

From the results of the computer simulation it can be concluded that weaker inhibition from the neighbouring fingers would shorten the reaction time of the middle finger. This would require a so-termed plastic change in the brain – a specialty of the Neural Plasticity Lab, which has been studying the development of learning protocols that induce such changes for years. One such protocol is the repeated stimulation of certain nerve cell groups, which the laboratory has already used in many experiments. “If, for example, you stimulate one finger electrically or by means of vibration for two to three hours, then its representation in the brain changes” explained Dr. Dinse. The result is an improvement in the sense of touch and a measurable reduction of the inhibitory processes in this brain area. This also results in the enlargement of the representation of the finger stimulated.

Second experiment confirms the prediction

The Bochum researchers then conducted a second experiment in which the middle finger of the right hand was subjected to such stimulation. The result was a significant shortening of the reaction time of this finger in the selection task. “This finding confirms our prediction” Dr. Dinse summed up. Thus, for the first time, Bochum’s researchers have established a direct link between the so-called lateral inhibitory processes and decision making processes. They have shown that learning processes that change the cortical maps can have far-reaching implications not only for simple discrimination tasks, but also for decision processes that were previously attributed to the so-called “higher” cortical areas.

Funding

The research work was funded by the German National Academic Foundation and the Alexander von Humboldt Foundation (scholarships Claudia Wilimzig, now at the California Institute of Technology), a scholarship from the International Graduate School of Neuroscience at the RUB (Patrick Ragert, now at the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig), the German Research Foundation (Di 334/10) and the Bernstein Focus “State dependencies of learning” (Hubert Dinse).

Bibliographic record

Claudia Wilimzig, Patrick Ragert, and Hubert R. Dinse. Cortical topography of intracortical inhibition influences the speed of decision making, PNAS (2012), doi/10.1073/pnas.1114250109

Further information

PD Dr. Hubert R. Dinse, Institute for Neuroral Computation, Neural Plasticity Lab at the Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25565, E-Mail: hubert.dinse@rub.de, http://www.neuralplasticitylab.de

Editor: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.neuralplasticitylab.de

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>